Properties

Label 2-1045-1.1-c5-0-191
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.8·2-s − 1.98·3-s + 86.5·4-s − 25·5-s − 21.6·6-s + 73.9·7-s + 593.·8-s − 239.·9-s − 272.·10-s + 121·11-s − 171.·12-s + 816.·13-s + 804.·14-s + 49.6·15-s + 3.69e3·16-s − 122.·17-s − 2.60e3·18-s − 361·19-s − 2.16e3·20-s − 146.·21-s + 1.31e3·22-s + 895.·23-s − 1.17e3·24-s + 625·25-s + 8.88e3·26-s + 957.·27-s + 6.39e3·28-s + ⋯
L(s)  = 1  + 1.92·2-s − 0.127·3-s + 2.70·4-s − 0.447·5-s − 0.245·6-s + 0.570·7-s + 3.27·8-s − 0.983·9-s − 0.860·10-s + 0.301·11-s − 0.344·12-s + 1.33·13-s + 1.09·14-s + 0.0569·15-s + 3.60·16-s − 0.102·17-s − 1.89·18-s − 0.229·19-s − 1.20·20-s − 0.0726·21-s + 0.580·22-s + 0.353·23-s − 0.417·24-s + 0.200·25-s + 2.57·26-s + 0.252·27-s + 1.54·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(9.152040679\)
\(L(\frac12)\) \(\approx\) \(9.152040679\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 10.8T + 32T^{2} \)
3 \( 1 + 1.98T + 243T^{2} \)
7 \( 1 - 73.9T + 1.68e4T^{2} \)
13 \( 1 - 816.T + 3.71e5T^{2} \)
17 \( 1 + 122.T + 1.41e6T^{2} \)
23 \( 1 - 895.T + 6.43e6T^{2} \)
29 \( 1 + 3.31e3T + 2.05e7T^{2} \)
31 \( 1 - 3.81e3T + 2.86e7T^{2} \)
37 \( 1 + 6.86e3T + 6.93e7T^{2} \)
41 \( 1 - 2.09e4T + 1.15e8T^{2} \)
43 \( 1 - 1.74e4T + 1.47e8T^{2} \)
47 \( 1 - 6.49e3T + 2.29e8T^{2} \)
53 \( 1 - 2.79e4T + 4.18e8T^{2} \)
59 \( 1 + 4.68e4T + 7.14e8T^{2} \)
61 \( 1 + 9.16e3T + 8.44e8T^{2} \)
67 \( 1 - 2.48e3T + 1.35e9T^{2} \)
71 \( 1 - 1.34e4T + 1.80e9T^{2} \)
73 \( 1 - 397.T + 2.07e9T^{2} \)
79 \( 1 - 6.60e4T + 3.07e9T^{2} \)
83 \( 1 + 3.13e4T + 3.93e9T^{2} \)
89 \( 1 + 8.31e3T + 5.58e9T^{2} \)
97 \( 1 - 4.59e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.025276959832226156911896654748, −8.080973842252070421038093443615, −7.24663410300769415336374851371, −6.19352852948328876284399133991, −5.76650110994058963052598460142, −4.76471049984506683346951334267, −3.99419926707534508175072408775, −3.22177635456945920427280563641, −2.23090673453354784939670686253, −1.02665627229847561530835266241, 1.02665627229847561530835266241, 2.23090673453354784939670686253, 3.22177635456945920427280563641, 3.99419926707534508175072408775, 4.76471049984506683346951334267, 5.76650110994058963052598460142, 6.19352852948328876284399133991, 7.24663410300769415336374851371, 8.080973842252070421038093443615, 9.025276959832226156911896654748

Graph of the $Z$-function along the critical line