Properties

Label 2-1045-1.1-c5-0-115
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.73·2-s − 12.3·3-s + 27.7·4-s − 25·5-s − 95.7·6-s + 224.·7-s − 32.6·8-s − 89.6·9-s − 193.·10-s + 121·11-s − 344.·12-s + 167.·13-s + 1.73e3·14-s + 309.·15-s − 1.14e3·16-s − 777.·17-s − 692.·18-s − 361·19-s − 694.·20-s − 2.78e3·21-s + 935.·22-s + 1.90e3·23-s + 403.·24-s + 625·25-s + 1.29e3·26-s + 4.11e3·27-s + 6.23e3·28-s + ⋯
L(s)  = 1  + 1.36·2-s − 0.794·3-s + 0.868·4-s − 0.447·5-s − 1.08·6-s + 1.73·7-s − 0.180·8-s − 0.368·9-s − 0.611·10-s + 0.301·11-s − 0.689·12-s + 0.274·13-s + 2.36·14-s + 0.355·15-s − 1.11·16-s − 0.652·17-s − 0.504·18-s − 0.229·19-s − 0.388·20-s − 1.37·21-s + 0.412·22-s + 0.750·23-s + 0.143·24-s + 0.200·25-s + 0.375·26-s + 1.08·27-s + 1.50·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.474076100\)
\(L(\frac12)\) \(\approx\) \(3.474076100\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 7.73T + 32T^{2} \)
3 \( 1 + 12.3T + 243T^{2} \)
7 \( 1 - 224.T + 1.68e4T^{2} \)
13 \( 1 - 167.T + 3.71e5T^{2} \)
17 \( 1 + 777.T + 1.41e6T^{2} \)
23 \( 1 - 1.90e3T + 6.43e6T^{2} \)
29 \( 1 + 2.19e3T + 2.05e7T^{2} \)
31 \( 1 - 5.84e3T + 2.86e7T^{2} \)
37 \( 1 - 3.92e3T + 6.93e7T^{2} \)
41 \( 1 + 1.71e4T + 1.15e8T^{2} \)
43 \( 1 + 3.20e3T + 1.47e8T^{2} \)
47 \( 1 - 8.47e3T + 2.29e8T^{2} \)
53 \( 1 - 2.18e4T + 4.18e8T^{2} \)
59 \( 1 - 7.05e3T + 7.14e8T^{2} \)
61 \( 1 + 3.88e4T + 8.44e8T^{2} \)
67 \( 1 - 3.72e3T + 1.35e9T^{2} \)
71 \( 1 + 3.74e4T + 1.80e9T^{2} \)
73 \( 1 - 8.27e3T + 2.07e9T^{2} \)
79 \( 1 + 7.86e4T + 3.07e9T^{2} \)
83 \( 1 - 7.79e4T + 3.93e9T^{2} \)
89 \( 1 - 9.98e4T + 5.58e9T^{2} \)
97 \( 1 + 9.95e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.911381982965856093180414608447, −8.376487203990962888812543014030, −7.24582458420631636014094178950, −6.33581395827360189125476643397, −5.52227634623963515554117586659, −4.77936913132636778158797610297, −4.33962510409178512618957212077, −3.15799414982144315028540600327, −1.96487612086898768001709161173, −0.68113868251437454606821131908, 0.68113868251437454606821131908, 1.96487612086898768001709161173, 3.15799414982144315028540600327, 4.33962510409178512618957212077, 4.77936913132636778158797610297, 5.52227634623963515554117586659, 6.33581395827360189125476643397, 7.24582458420631636014094178950, 8.376487203990962888812543014030, 8.911381982965856093180414608447

Graph of the $Z$-function along the critical line