Properties

Label 2-1045-1.1-c5-0-17
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.71·2-s + 14.3·3-s + 62.3·4-s − 25·5-s − 139.·6-s − 67.8·7-s − 294.·8-s − 37.0·9-s + 242.·10-s + 121·11-s + 894.·12-s − 692.·13-s + 658.·14-s − 358.·15-s + 866.·16-s − 1.45e3·17-s + 359.·18-s − 361·19-s − 1.55e3·20-s − 973.·21-s − 1.17e3·22-s − 2.58e3·23-s − 4.22e3·24-s + 625·25-s + 6.72e3·26-s − 4.01e3·27-s − 4.22e3·28-s + ⋯
L(s)  = 1  − 1.71·2-s + 0.920·3-s + 1.94·4-s − 0.447·5-s − 1.58·6-s − 0.523·7-s − 1.62·8-s − 0.152·9-s + 0.767·10-s + 0.301·11-s + 1.79·12-s − 1.13·13-s + 0.898·14-s − 0.411·15-s + 0.846·16-s − 1.22·17-s + 0.261·18-s − 0.229·19-s − 0.871·20-s − 0.481·21-s − 0.517·22-s − 1.01·23-s − 1.49·24-s + 0.200·25-s + 1.95·26-s − 1.06·27-s − 1.01·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2192767822\)
\(L(\frac12)\) \(\approx\) \(0.2192767822\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 9.71T + 32T^{2} \)
3 \( 1 - 14.3T + 243T^{2} \)
7 \( 1 + 67.8T + 1.68e4T^{2} \)
13 \( 1 + 692.T + 3.71e5T^{2} \)
17 \( 1 + 1.45e3T + 1.41e6T^{2} \)
23 \( 1 + 2.58e3T + 6.43e6T^{2} \)
29 \( 1 - 4.89e3T + 2.05e7T^{2} \)
31 \( 1 + 991.T + 2.86e7T^{2} \)
37 \( 1 - 302.T + 6.93e7T^{2} \)
41 \( 1 + 1.58e4T + 1.15e8T^{2} \)
43 \( 1 + 1.00e4T + 1.47e8T^{2} \)
47 \( 1 + 2.34e4T + 2.29e8T^{2} \)
53 \( 1 + 1.38e4T + 4.18e8T^{2} \)
59 \( 1 - 4.15e3T + 7.14e8T^{2} \)
61 \( 1 - 3.54e4T + 8.44e8T^{2} \)
67 \( 1 + 5.51e4T + 1.35e9T^{2} \)
71 \( 1 - 3.56e4T + 1.80e9T^{2} \)
73 \( 1 - 3.41e4T + 2.07e9T^{2} \)
79 \( 1 - 8.58e3T + 3.07e9T^{2} \)
83 \( 1 - 1.00e5T + 3.93e9T^{2} \)
89 \( 1 + 1.08e5T + 5.58e9T^{2} \)
97 \( 1 - 5.87e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153560535068319397895505675090, −8.339894144027791196378768161375, −7.994922293517533825539741357024, −6.94175710345335015341103270692, −6.41671084290273915833652536668, −4.76767198531021015599036877453, −3.46687941764919102409344493610, −2.52392273428739625480496901738, −1.77220508285875427473878822978, −0.23635537100412573926347223559, 0.23635537100412573926347223559, 1.77220508285875427473878822978, 2.52392273428739625480496901738, 3.46687941764919102409344493610, 4.76767198531021015599036877453, 6.41671084290273915833652536668, 6.94175710345335015341103270692, 7.994922293517533825539741357024, 8.339894144027791196378768161375, 9.153560535068319397895505675090

Graph of the $Z$-function along the critical line