Properties

Label 2-1045-1.1-c5-0-0
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.27·2-s + 0.134·3-s − 4.18·4-s − 25·5-s + 0.711·6-s − 143.·7-s − 190.·8-s − 242.·9-s − 131.·10-s + 121·11-s − 0.565·12-s − 147.·13-s − 758.·14-s − 3.37·15-s − 872.·16-s − 1.42e3·17-s − 1.28e3·18-s − 361·19-s + 104.·20-s − 19.3·21-s + 638.·22-s − 469.·23-s − 25.7·24-s + 625·25-s − 779.·26-s − 65.5·27-s + 602.·28-s + ⋯
L(s)  = 1  + 0.932·2-s + 0.00865·3-s − 0.130·4-s − 0.447·5-s + 0.00806·6-s − 1.10·7-s − 1.05·8-s − 0.999·9-s − 0.416·10-s + 0.301·11-s − 0.00113·12-s − 0.242·13-s − 1.03·14-s − 0.00387·15-s − 0.852·16-s − 1.19·17-s − 0.932·18-s − 0.229·19-s + 0.0585·20-s − 0.00959·21-s + 0.281·22-s − 0.184·23-s − 0.00912·24-s + 0.200·25-s − 0.226·26-s − 0.0173·27-s + 0.145·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0007087602598\)
\(L(\frac12)\) \(\approx\) \(0.0007087602598\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 5.27T + 32T^{2} \)
3 \( 1 - 0.134T + 243T^{2} \)
7 \( 1 + 143.T + 1.68e4T^{2} \)
13 \( 1 + 147.T + 3.71e5T^{2} \)
17 \( 1 + 1.42e3T + 1.41e6T^{2} \)
23 \( 1 + 469.T + 6.43e6T^{2} \)
29 \( 1 + 8.50e3T + 2.05e7T^{2} \)
31 \( 1 + 3.48e3T + 2.86e7T^{2} \)
37 \( 1 + 1.51e4T + 6.93e7T^{2} \)
41 \( 1 + 1.21e4T + 1.15e8T^{2} \)
43 \( 1 + 1.13e4T + 1.47e8T^{2} \)
47 \( 1 - 2.07e4T + 2.29e8T^{2} \)
53 \( 1 + 2.09e3T + 4.18e8T^{2} \)
59 \( 1 + 1.48e4T + 7.14e8T^{2} \)
61 \( 1 + 1.29e4T + 8.44e8T^{2} \)
67 \( 1 - 3.03e4T + 1.35e9T^{2} \)
71 \( 1 + 3.62e4T + 1.80e9T^{2} \)
73 \( 1 - 4.13e4T + 2.07e9T^{2} \)
79 \( 1 + 510.T + 3.07e9T^{2} \)
83 \( 1 + 6.77e4T + 3.93e9T^{2} \)
89 \( 1 + 9.75e4T + 5.58e9T^{2} \)
97 \( 1 - 1.60e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.978176820502759579478698424790, −8.671560520069607647835049349890, −7.27802759853561824974158509593, −6.45371661943844476964727489050, −5.70530787655860371938053373334, −4.84640406689824004568442179165, −3.74175657033946357147880835514, −3.30618449647980903992484079471, −2.15134542329527668391316830874, −0.009193166371229907585281786377, 0.009193166371229907585281786377, 2.15134542329527668391316830874, 3.30618449647980903992484079471, 3.74175657033946357147880835514, 4.84640406689824004568442179165, 5.70530787655860371938053373334, 6.45371661943844476964727489050, 7.27802759853561824974158509593, 8.671560520069607647835049349890, 8.978176820502759579478698424790

Graph of the $Z$-function along the critical line