Properties

Label 2-1045-1.1-c5-0-81
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.82·2-s + 16.7·3-s − 17.3·4-s − 25·5-s + 64.2·6-s + 68.9·7-s − 188.·8-s + 39.1·9-s − 95.5·10-s + 121·11-s − 292.·12-s − 1.03e3·13-s + 263.·14-s − 419.·15-s − 164.·16-s − 891.·17-s + 149.·18-s − 361·19-s + 434.·20-s + 1.15e3·21-s + 462.·22-s + 3.27e3·23-s − 3.17e3·24-s + 625·25-s − 3.95e3·26-s − 3.42e3·27-s − 1.19e3·28-s + ⋯
L(s)  = 1  + 0.675·2-s + 1.07·3-s − 0.543·4-s − 0.447·5-s + 0.728·6-s + 0.531·7-s − 1.04·8-s + 0.161·9-s − 0.302·10-s + 0.301·11-s − 0.585·12-s − 1.69·13-s + 0.359·14-s − 0.481·15-s − 0.160·16-s − 0.748·17-s + 0.108·18-s − 0.229·19-s + 0.243·20-s + 0.573·21-s + 0.203·22-s + 1.29·23-s − 1.12·24-s + 0.200·25-s − 1.14·26-s − 0.903·27-s − 0.289·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.750984014\)
\(L(\frac12)\) \(\approx\) \(2.750984014\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 3.82T + 32T^{2} \)
3 \( 1 - 16.7T + 243T^{2} \)
7 \( 1 - 68.9T + 1.68e4T^{2} \)
13 \( 1 + 1.03e3T + 3.71e5T^{2} \)
17 \( 1 + 891.T + 1.41e6T^{2} \)
23 \( 1 - 3.27e3T + 6.43e6T^{2} \)
29 \( 1 + 6.31e3T + 2.05e7T^{2} \)
31 \( 1 - 5.46e3T + 2.86e7T^{2} \)
37 \( 1 - 1.27e4T + 6.93e7T^{2} \)
41 \( 1 - 1.42e4T + 1.15e8T^{2} \)
43 \( 1 + 9.69e3T + 1.47e8T^{2} \)
47 \( 1 - 1.83e4T + 2.29e8T^{2} \)
53 \( 1 - 2.22e3T + 4.18e8T^{2} \)
59 \( 1 + 6.84e3T + 7.14e8T^{2} \)
61 \( 1 - 1.56e4T + 8.44e8T^{2} \)
67 \( 1 - 3.77e4T + 1.35e9T^{2} \)
71 \( 1 - 3.26e4T + 1.80e9T^{2} \)
73 \( 1 + 1.16e4T + 2.07e9T^{2} \)
79 \( 1 - 9.71e4T + 3.07e9T^{2} \)
83 \( 1 - 8.98e4T + 3.93e9T^{2} \)
89 \( 1 + 9.65e4T + 5.58e9T^{2} \)
97 \( 1 + 1.21e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.322534488729521985836328647578, −8.312903359462835798854023328937, −7.72434306844614590675020528774, −6.75255305076771012273219262750, −5.47064241478269929425652549314, −4.64713654561994208030071331522, −3.99729567449675946252131193737, −2.93761755407244755314059013565, −2.25231066488851849755809224482, −0.59092609829095570892424182277, 0.59092609829095570892424182277, 2.25231066488851849755809224482, 2.93761755407244755314059013565, 3.99729567449675946252131193737, 4.64713654561994208030071331522, 5.47064241478269929425652549314, 6.75255305076771012273219262750, 7.72434306844614590675020528774, 8.312903359462835798854023328937, 9.322534488729521985836328647578

Graph of the $Z$-function along the critical line