Properties

Label 2-1045-1.1-c5-0-48
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.72·2-s − 28.7·3-s + 62.5·4-s − 25·5-s + 279.·6-s − 28.8·7-s − 297.·8-s + 581.·9-s + 243.·10-s + 121·11-s − 1.79e3·12-s − 385.·13-s + 280.·14-s + 717.·15-s + 891.·16-s + 296.·17-s − 5.65e3·18-s − 361·19-s − 1.56e3·20-s + 827.·21-s − 1.17e3·22-s − 3.76e3·23-s + 8.54e3·24-s + 625·25-s + 3.74e3·26-s − 9.71e3·27-s − 1.80e3·28-s + ⋯
L(s)  = 1  − 1.71·2-s − 1.84·3-s + 1.95·4-s − 0.447·5-s + 3.16·6-s − 0.222·7-s − 1.64·8-s + 2.39·9-s + 0.768·10-s + 0.301·11-s − 3.60·12-s − 0.632·13-s + 0.382·14-s + 0.823·15-s + 0.870·16-s + 0.248·17-s − 4.11·18-s − 0.229·19-s − 0.874·20-s + 0.409·21-s − 0.518·22-s − 1.48·23-s + 3.02·24-s + 0.200·25-s + 1.08·26-s − 2.56·27-s − 0.434·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3133555548\)
\(L(\frac12)\) \(\approx\) \(0.3133555548\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 9.72T + 32T^{2} \)
3 \( 1 + 28.7T + 243T^{2} \)
7 \( 1 + 28.8T + 1.68e4T^{2} \)
13 \( 1 + 385.T + 3.71e5T^{2} \)
17 \( 1 - 296.T + 1.41e6T^{2} \)
23 \( 1 + 3.76e3T + 6.43e6T^{2} \)
29 \( 1 - 3.92e3T + 2.05e7T^{2} \)
31 \( 1 - 8.45e3T + 2.86e7T^{2} \)
37 \( 1 - 6.11e3T + 6.93e7T^{2} \)
41 \( 1 + 2.31e3T + 1.15e8T^{2} \)
43 \( 1 + 2.34e3T + 1.47e8T^{2} \)
47 \( 1 - 2.16e4T + 2.29e8T^{2} \)
53 \( 1 - 1.53e4T + 4.18e8T^{2} \)
59 \( 1 + 3.04e4T + 7.14e8T^{2} \)
61 \( 1 - 4.33e4T + 8.44e8T^{2} \)
67 \( 1 - 6.13e4T + 1.35e9T^{2} \)
71 \( 1 - 4.86e4T + 1.80e9T^{2} \)
73 \( 1 + 6.47e4T + 2.07e9T^{2} \)
79 \( 1 - 1.02e5T + 3.07e9T^{2} \)
83 \( 1 - 1.17e5T + 3.93e9T^{2} \)
89 \( 1 - 1.09e5T + 5.58e9T^{2} \)
97 \( 1 + 9.78e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.507768572055232819307070572914, −8.253450951412613812216813344699, −7.60222531631717772231879012092, −6.62487306747379576989074008372, −6.28944736708046120124471624647, −5.08197610365832970719204393231, −4.07510094274172563416971230584, −2.31239028396566318523147783338, −1.06213686321669940912587628347, −0.44049808586085997616757652705, 0.44049808586085997616757652705, 1.06213686321669940912587628347, 2.31239028396566318523147783338, 4.07510094274172563416971230584, 5.08197610365832970719204393231, 6.28944736708046120124471624647, 6.62487306747379576989074008372, 7.60222531631717772231879012092, 8.253450951412613812216813344699, 9.507768572055232819307070572914

Graph of the $Z$-function along the critical line