Properties

Label 2-1045-1.1-c5-0-181
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.506·2-s + 30.1·3-s − 31.7·4-s − 25·5-s + 15.2·6-s + 184.·7-s − 32.2·8-s + 664.·9-s − 12.6·10-s + 121·11-s − 956.·12-s − 525.·13-s + 93.5·14-s − 752.·15-s + 999.·16-s + 2.23e3·17-s + 336.·18-s − 361·19-s + 793.·20-s + 5.56e3·21-s + 61.3·22-s − 728.·23-s − 972.·24-s + 625·25-s − 266.·26-s + 1.26e4·27-s − 5.86e3·28-s + ⋯
L(s)  = 1  + 0.0895·2-s + 1.93·3-s − 0.991·4-s − 0.447·5-s + 0.173·6-s + 1.42·7-s − 0.178·8-s + 2.73·9-s − 0.0400·10-s + 0.301·11-s − 1.91·12-s − 0.863·13-s + 0.127·14-s − 0.864·15-s + 0.975·16-s + 1.87·17-s + 0.244·18-s − 0.229·19-s + 0.443·20-s + 2.75·21-s + 0.0270·22-s − 0.286·23-s − 0.344·24-s + 0.200·25-s − 0.0773·26-s + 3.34·27-s − 1.41·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.168663260\)
\(L(\frac12)\) \(\approx\) \(5.168663260\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 0.506T + 32T^{2} \)
3 \( 1 - 30.1T + 243T^{2} \)
7 \( 1 - 184.T + 1.68e4T^{2} \)
13 \( 1 + 525.T + 3.71e5T^{2} \)
17 \( 1 - 2.23e3T + 1.41e6T^{2} \)
23 \( 1 + 728.T + 6.43e6T^{2} \)
29 \( 1 + 2.18e3T + 2.05e7T^{2} \)
31 \( 1 + 988.T + 2.86e7T^{2} \)
37 \( 1 + 1.12e3T + 6.93e7T^{2} \)
41 \( 1 - 9.58e3T + 1.15e8T^{2} \)
43 \( 1 - 1.67e3T + 1.47e8T^{2} \)
47 \( 1 + 4.56e3T + 2.29e8T^{2} \)
53 \( 1 - 3.17e3T + 4.18e8T^{2} \)
59 \( 1 - 1.16e4T + 7.14e8T^{2} \)
61 \( 1 - 2.43e4T + 8.44e8T^{2} \)
67 \( 1 + 2.96e4T + 1.35e9T^{2} \)
71 \( 1 - 3.37e4T + 1.80e9T^{2} \)
73 \( 1 - 1.31e3T + 2.07e9T^{2} \)
79 \( 1 + 5.91e4T + 3.07e9T^{2} \)
83 \( 1 + 8.99e4T + 3.93e9T^{2} \)
89 \( 1 - 4.83e4T + 5.58e9T^{2} \)
97 \( 1 - 1.59e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.048937410776478226191209262418, −8.258627711280838585722527947487, −7.85298397930862612637873372129, −7.26886949262874928369270695443, −5.42312999378956366608567076170, −4.52597373005498406962072039005, −3.89220246859633211942835287072, −3.03239088416096081167524932819, −1.86945819719230403523177703684, −0.957230923497443159097038522731, 0.957230923497443159097038522731, 1.86945819719230403523177703684, 3.03239088416096081167524932819, 3.89220246859633211942835287072, 4.52597373005498406962072039005, 5.42312999378956366608567076170, 7.26886949262874928369270695443, 7.85298397930862612637873372129, 8.258627711280838585722527947487, 9.048937410776478226191209262418

Graph of the $Z$-function along the critical line