Properties

Label 2-1045-1.1-c5-0-46
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·2-s − 13.1·3-s − 26.3·4-s − 25·5-s + 31.1·6-s + 161.·7-s + 138.·8-s − 70.8·9-s + 59.3·10-s + 121·11-s + 346.·12-s − 854.·13-s − 382.·14-s + 328.·15-s + 515.·16-s − 773.·17-s + 168.·18-s − 361·19-s + 659.·20-s − 2.11e3·21-s − 287.·22-s + 3.01e3·23-s − 1.81e3·24-s + 625·25-s + 2.02e3·26-s + 4.11e3·27-s − 4.25e3·28-s + ⋯
L(s)  = 1  − 0.419·2-s − 0.841·3-s − 0.824·4-s − 0.447·5-s + 0.353·6-s + 1.24·7-s + 0.765·8-s − 0.291·9-s + 0.187·10-s + 0.301·11-s + 0.693·12-s − 1.40·13-s − 0.521·14-s + 0.376·15-s + 0.503·16-s − 0.649·17-s + 0.122·18-s − 0.229·19-s + 0.368·20-s − 1.04·21-s − 0.126·22-s + 1.18·23-s − 0.644·24-s + 0.200·25-s + 0.588·26-s + 1.08·27-s − 1.02·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6112389251\)
\(L(\frac12)\) \(\approx\) \(0.6112389251\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 2.37T + 32T^{2} \)
3 \( 1 + 13.1T + 243T^{2} \)
7 \( 1 - 161.T + 1.68e4T^{2} \)
13 \( 1 + 854.T + 3.71e5T^{2} \)
17 \( 1 + 773.T + 1.41e6T^{2} \)
23 \( 1 - 3.01e3T + 6.43e6T^{2} \)
29 \( 1 - 1.56e3T + 2.05e7T^{2} \)
31 \( 1 - 5.62e3T + 2.86e7T^{2} \)
37 \( 1 + 2.17e3T + 6.93e7T^{2} \)
41 \( 1 - 8.71e3T + 1.15e8T^{2} \)
43 \( 1 + 2.64e3T + 1.47e8T^{2} \)
47 \( 1 + 7.28e3T + 2.29e8T^{2} \)
53 \( 1 - 4.28e3T + 4.18e8T^{2} \)
59 \( 1 + 1.55e4T + 7.14e8T^{2} \)
61 \( 1 - 1.67e3T + 8.44e8T^{2} \)
67 \( 1 + 5.69e3T + 1.35e9T^{2} \)
71 \( 1 + 6.65e4T + 1.80e9T^{2} \)
73 \( 1 + 2.75e4T + 2.07e9T^{2} \)
79 \( 1 + 3.89e4T + 3.07e9T^{2} \)
83 \( 1 + 1.78e4T + 3.93e9T^{2} \)
89 \( 1 + 1.07e5T + 5.58e9T^{2} \)
97 \( 1 - 1.70e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.047531692603974327650117772174, −8.433688168086369882067833808998, −7.64782867878220488044628004609, −6.80166301680677178872476709809, −5.54595140297386974115610803952, −4.73920573571355507503460050381, −4.42805833129723619001380572185, −2.80009927041868259029228712085, −1.39311553052216795780125815546, −0.41338659402449053437089015317, 0.41338659402449053437089015317, 1.39311553052216795780125815546, 2.80009927041868259029228712085, 4.42805833129723619001380572185, 4.73920573571355507503460050381, 5.54595140297386974115610803952, 6.80166301680677178872476709809, 7.64782867878220488044628004609, 8.433688168086369882067833808998, 9.047531692603974327650117772174

Graph of the $Z$-function along the critical line