Properties

Label 2-1045-1.1-c5-0-94
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.40·2-s − 14.4·3-s − 12.5·4-s − 25·5-s + 63.4·6-s − 75.0·7-s + 196.·8-s − 35.5·9-s + 110.·10-s + 121·11-s + 181.·12-s + 337.·13-s + 330.·14-s + 360.·15-s − 463.·16-s + 2.17e3·17-s + 156.·18-s − 361·19-s + 314.·20-s + 1.08e3·21-s − 533.·22-s + 597.·23-s − 2.82e3·24-s + 625·25-s − 1.48e3·26-s + 4.01e3·27-s + 943.·28-s + ⋯
L(s)  = 1  − 0.779·2-s − 0.923·3-s − 0.392·4-s − 0.447·5-s + 0.719·6-s − 0.578·7-s + 1.08·8-s − 0.146·9-s + 0.348·10-s + 0.301·11-s + 0.362·12-s + 0.553·13-s + 0.451·14-s + 0.413·15-s − 0.452·16-s + 1.82·17-s + 0.114·18-s − 0.229·19-s + 0.175·20-s + 0.534·21-s − 0.234·22-s + 0.235·23-s − 1.00·24-s + 0.200·25-s − 0.431·26-s + 1.05·27-s + 0.227·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8632864676\)
\(L(\frac12)\) \(\approx\) \(0.8632864676\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 4.40T + 32T^{2} \)
3 \( 1 + 14.4T + 243T^{2} \)
7 \( 1 + 75.0T + 1.68e4T^{2} \)
13 \( 1 - 337.T + 3.71e5T^{2} \)
17 \( 1 - 2.17e3T + 1.41e6T^{2} \)
23 \( 1 - 597.T + 6.43e6T^{2} \)
29 \( 1 - 7.97e3T + 2.05e7T^{2} \)
31 \( 1 - 3.51e3T + 2.86e7T^{2} \)
37 \( 1 - 3.58e3T + 6.93e7T^{2} \)
41 \( 1 - 9.55e3T + 1.15e8T^{2} \)
43 \( 1 - 1.17e4T + 1.47e8T^{2} \)
47 \( 1 - 2.07e4T + 2.29e8T^{2} \)
53 \( 1 + 1.40e4T + 4.18e8T^{2} \)
59 \( 1 + 2.62e4T + 7.14e8T^{2} \)
61 \( 1 - 1.71e4T + 8.44e8T^{2} \)
67 \( 1 - 4.74e4T + 1.35e9T^{2} \)
71 \( 1 + 4.24e3T + 1.80e9T^{2} \)
73 \( 1 - 4.61e4T + 2.07e9T^{2} \)
79 \( 1 - 6.11e4T + 3.07e9T^{2} \)
83 \( 1 + 7.28e4T + 3.93e9T^{2} \)
89 \( 1 + 5.84e4T + 5.58e9T^{2} \)
97 \( 1 + 4.37e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.237750967142653836316863510942, −8.360108591226448714352349321801, −7.72890867050147743678182756414, −6.64687851778914538190289598743, −5.86894886478953871789007611887, −4.94390955084878683418973133110, −3.99226361027269777591659187726, −2.91733942168919928917154549120, −1.06406965705017484624337635236, −0.63237741166012412365849278789, 0.63237741166012412365849278789, 1.06406965705017484624337635236, 2.91733942168919928917154549120, 3.99226361027269777591659187726, 4.94390955084878683418973133110, 5.86894886478953871789007611887, 6.64687851778914538190289598743, 7.72890867050147743678182756414, 8.360108591226448714352349321801, 9.237750967142653836316863510942

Graph of the $Z$-function along the critical line