Properties

Label 2-1045-1.1-c5-0-132
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.82·2-s + 17.2·3-s − 8.67·4-s − 25·5-s − 83.3·6-s + 225.·7-s + 196.·8-s + 55.0·9-s + 120.·10-s + 121·11-s − 149.·12-s + 270.·13-s − 1.09e3·14-s − 431.·15-s − 671.·16-s − 79.8·17-s − 265.·18-s − 361·19-s + 216.·20-s + 3.89e3·21-s − 584.·22-s − 3.34e3·23-s + 3.39e3·24-s + 625·25-s − 1.30e3·26-s − 3.24e3·27-s − 1.95e3·28-s + ⋯
L(s)  = 1  − 0.853·2-s + 1.10·3-s − 0.270·4-s − 0.447·5-s − 0.945·6-s + 1.74·7-s + 1.08·8-s + 0.226·9-s + 0.381·10-s + 0.301·11-s − 0.300·12-s + 0.443·13-s − 1.48·14-s − 0.495·15-s − 0.655·16-s − 0.0669·17-s − 0.193·18-s − 0.229·19-s + 0.121·20-s + 1.92·21-s − 0.257·22-s − 1.31·23-s + 1.20·24-s + 0.200·25-s − 0.378·26-s − 0.856·27-s − 0.472·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.357355004\)
\(L(\frac12)\) \(\approx\) \(2.357355004\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 4.82T + 32T^{2} \)
3 \( 1 - 17.2T + 243T^{2} \)
7 \( 1 - 225.T + 1.68e4T^{2} \)
13 \( 1 - 270.T + 3.71e5T^{2} \)
17 \( 1 + 79.8T + 1.41e6T^{2} \)
23 \( 1 + 3.34e3T + 6.43e6T^{2} \)
29 \( 1 - 8.04e3T + 2.05e7T^{2} \)
31 \( 1 - 2.16e3T + 2.86e7T^{2} \)
37 \( 1 - 1.00e4T + 6.93e7T^{2} \)
41 \( 1 - 4.73e3T + 1.15e8T^{2} \)
43 \( 1 - 6.92e3T + 1.47e8T^{2} \)
47 \( 1 - 7.56e3T + 2.29e8T^{2} \)
53 \( 1 - 2.38e4T + 4.18e8T^{2} \)
59 \( 1 - 2.30e4T + 7.14e8T^{2} \)
61 \( 1 + 2.07e4T + 8.44e8T^{2} \)
67 \( 1 + 1.68e4T + 1.35e9T^{2} \)
71 \( 1 + 23.1T + 1.80e9T^{2} \)
73 \( 1 + 1.91e4T + 2.07e9T^{2} \)
79 \( 1 + 9.18e4T + 3.07e9T^{2} \)
83 \( 1 - 4.53e3T + 3.93e9T^{2} \)
89 \( 1 + 9.76e4T + 5.58e9T^{2} \)
97 \( 1 + 7.48e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.834779082101186224971148395571, −8.358431605769721667219301566180, −8.012779615315461758452749855726, −7.23165803648097211543937946370, −5.75835517014546773408697342285, −4.45743159061746808922138788449, −4.11161916444114793721774810230, −2.62655453562404670546914317474, −1.65380503799633529720653234349, −0.76680656621098797637424160229, 0.76680656621098797637424160229, 1.65380503799633529720653234349, 2.62655453562404670546914317474, 4.11161916444114793721774810230, 4.45743159061746808922138788449, 5.75835517014546773408697342285, 7.23165803648097211543937946370, 8.012779615315461758452749855726, 8.358431605769721667219301566180, 8.834779082101186224971148395571

Graph of the $Z$-function along the critical line