Properties

Label 2-1045-1.1-c5-0-30
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.60·2-s + 14.2·3-s − 0.613·4-s − 25·5-s − 79.7·6-s − 144.·7-s + 182.·8-s − 40.5·9-s + 140.·10-s + 121·11-s − 8.72·12-s + 356.·13-s + 810.·14-s − 355.·15-s − 1.00e3·16-s − 1.63e3·17-s + 227.·18-s − 361·19-s + 15.3·20-s − 2.05e3·21-s − 677.·22-s − 1.08e3·23-s + 2.59e3·24-s + 625·25-s − 1.99e3·26-s − 4.03e3·27-s + 88.7·28-s + ⋯
L(s)  = 1  − 0.990·2-s + 0.912·3-s − 0.0191·4-s − 0.447·5-s − 0.903·6-s − 1.11·7-s + 1.00·8-s − 0.166·9-s + 0.442·10-s + 0.301·11-s − 0.0174·12-s + 0.585·13-s + 1.10·14-s − 0.408·15-s − 0.980·16-s − 1.37·17-s + 0.165·18-s − 0.229·19-s + 0.00856·20-s − 1.01·21-s − 0.298·22-s − 0.426·23-s + 0.921·24-s + 0.200·25-s − 0.579·26-s − 1.06·27-s + 0.0213·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5027268645\)
\(L(\frac12)\) \(\approx\) \(0.5027268645\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 5.60T + 32T^{2} \)
3 \( 1 - 14.2T + 243T^{2} \)
7 \( 1 + 144.T + 1.68e4T^{2} \)
13 \( 1 - 356.T + 3.71e5T^{2} \)
17 \( 1 + 1.63e3T + 1.41e6T^{2} \)
23 \( 1 + 1.08e3T + 6.43e6T^{2} \)
29 \( 1 + 595.T + 2.05e7T^{2} \)
31 \( 1 - 5.40e3T + 2.86e7T^{2} \)
37 \( 1 + 8.38e3T + 6.93e7T^{2} \)
41 \( 1 - 2.05e4T + 1.15e8T^{2} \)
43 \( 1 + 1.60e4T + 1.47e8T^{2} \)
47 \( 1 + 1.38e4T + 2.29e8T^{2} \)
53 \( 1 - 1.09e4T + 4.18e8T^{2} \)
59 \( 1 + 3.99e4T + 7.14e8T^{2} \)
61 \( 1 + 4.84e4T + 8.44e8T^{2} \)
67 \( 1 - 3.53e4T + 1.35e9T^{2} \)
71 \( 1 + 1.45e4T + 1.80e9T^{2} \)
73 \( 1 + 5.44e4T + 2.07e9T^{2} \)
79 \( 1 - 3.08e4T + 3.07e9T^{2} \)
83 \( 1 + 4.37e3T + 3.93e9T^{2} \)
89 \( 1 - 5.58e4T + 5.58e9T^{2} \)
97 \( 1 + 1.38e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.107183864732930262703117521814, −8.523036549551872276503635205916, −7.88517523049131898574033357587, −6.89918873951513948999613724365, −6.11635538852176919023172499881, −4.57786994059137558476592459111, −3.74353479124773045571197969640, −2.82727951113009474427864869981, −1.69082389001198052503283176720, −0.33572211689679202434786114203, 0.33572211689679202434786114203, 1.69082389001198052503283176720, 2.82727951113009474427864869981, 3.74353479124773045571197969640, 4.57786994059137558476592459111, 6.11635538852176919023172499881, 6.89918873951513948999613724365, 7.88517523049131898574033357587, 8.523036549551872276503635205916, 9.107183864732930262703117521814

Graph of the $Z$-function along the critical line