Properties

Label 2-1045-1.1-c5-0-186
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.15·2-s + 5.08·3-s + 34.4·4-s − 25·5-s − 41.4·6-s + 169.·7-s − 20.2·8-s − 217.·9-s + 203.·10-s − 121·11-s + 175.·12-s − 1.13e3·13-s − 1.38e3·14-s − 127.·15-s − 938.·16-s + 773.·17-s + 1.77e3·18-s − 361·19-s − 862.·20-s + 864.·21-s + 986.·22-s + 1.48e3·23-s − 103.·24-s + 625·25-s + 9.25e3·26-s − 2.33e3·27-s + 5.86e3·28-s + ⋯
L(s)  = 1  − 1.44·2-s + 0.326·3-s + 1.07·4-s − 0.447·5-s − 0.470·6-s + 1.31·7-s − 0.112·8-s − 0.893·9-s + 0.644·10-s − 0.301·11-s + 0.351·12-s − 1.86·13-s − 1.88·14-s − 0.145·15-s − 0.916·16-s + 0.649·17-s + 1.28·18-s − 0.229·19-s − 0.481·20-s + 0.427·21-s + 0.434·22-s + 0.583·23-s − 0.0365·24-s + 0.200·25-s + 2.68·26-s − 0.617·27-s + 1.41·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 8.15T + 32T^{2} \)
3 \( 1 - 5.08T + 243T^{2} \)
7 \( 1 - 169.T + 1.68e4T^{2} \)
13 \( 1 + 1.13e3T + 3.71e5T^{2} \)
17 \( 1 - 773.T + 1.41e6T^{2} \)
23 \( 1 - 1.48e3T + 6.43e6T^{2} \)
29 \( 1 - 6.64e3T + 2.05e7T^{2} \)
31 \( 1 - 8.50e3T + 2.86e7T^{2} \)
37 \( 1 + 6.20e3T + 6.93e7T^{2} \)
41 \( 1 + 8.65e3T + 1.15e8T^{2} \)
43 \( 1 - 7.95e3T + 1.47e8T^{2} \)
47 \( 1 + 1.79e4T + 2.29e8T^{2} \)
53 \( 1 - 2.45e4T + 4.18e8T^{2} \)
59 \( 1 + 3.27e4T + 7.14e8T^{2} \)
61 \( 1 + 3.15e4T + 8.44e8T^{2} \)
67 \( 1 - 2.43e4T + 1.35e9T^{2} \)
71 \( 1 - 4.13e4T + 1.80e9T^{2} \)
73 \( 1 - 2.13e4T + 2.07e9T^{2} \)
79 \( 1 - 5.28e4T + 3.07e9T^{2} \)
83 \( 1 + 9.00e4T + 3.93e9T^{2} \)
89 \( 1 - 1.17e5T + 5.58e9T^{2} \)
97 \( 1 + 1.26e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.570200228988588343539778206393, −8.096570960981853843784173470458, −7.60281592253474278324913619532, −6.68047131456998643031433962802, −5.13235985443771244159663263936, −4.62214776425999592498084733319, −2.93769717776642653573263277827, −2.14645508803946091675640095472, −0.984598041156332945446260825940, 0, 0.984598041156332945446260825940, 2.14645508803946091675640095472, 2.93769717776642653573263277827, 4.62214776425999592498084733319, 5.13235985443771244159663263936, 6.68047131456998643031433962802, 7.60281592253474278324913619532, 8.096570960981853843784173470458, 8.570200228988588343539778206393

Graph of the $Z$-function along the critical line