Properties

Label 2-1045-1.1-c5-0-222
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.42·2-s − 20.3·3-s + 38.9·4-s − 25·5-s − 171.·6-s − 8.66·7-s + 58.6·8-s + 170.·9-s − 210.·10-s − 121·11-s − 791.·12-s + 610.·13-s − 72.9·14-s + 508.·15-s − 752.·16-s + 1.45e3·17-s + 1.43e3·18-s − 361·19-s − 974.·20-s + 175.·21-s − 1.01e3·22-s − 2.84e3·23-s − 1.19e3·24-s + 625·25-s + 5.14e3·26-s + 1.48e3·27-s − 337.·28-s + ⋯
L(s)  = 1  + 1.48·2-s − 1.30·3-s + 1.21·4-s − 0.447·5-s − 1.94·6-s − 0.0668·7-s + 0.324·8-s + 0.699·9-s − 0.665·10-s − 0.301·11-s − 1.58·12-s + 1.00·13-s − 0.0994·14-s + 0.583·15-s − 0.734·16-s + 1.22·17-s + 1.04·18-s − 0.229·19-s − 0.544·20-s + 0.0870·21-s − 0.449·22-s − 1.12·23-s − 0.422·24-s + 0.200·25-s + 1.49·26-s + 0.391·27-s − 0.0813·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 8.42T + 32T^{2} \)
3 \( 1 + 20.3T + 243T^{2} \)
7 \( 1 + 8.66T + 1.68e4T^{2} \)
13 \( 1 - 610.T + 3.71e5T^{2} \)
17 \( 1 - 1.45e3T + 1.41e6T^{2} \)
23 \( 1 + 2.84e3T + 6.43e6T^{2} \)
29 \( 1 - 3.50e3T + 2.05e7T^{2} \)
31 \( 1 - 3.44e3T + 2.86e7T^{2} \)
37 \( 1 + 1.88e3T + 6.93e7T^{2} \)
41 \( 1 - 1.96e4T + 1.15e8T^{2} \)
43 \( 1 + 4.12e3T + 1.47e8T^{2} \)
47 \( 1 + 6.63e3T + 2.29e8T^{2} \)
53 \( 1 - 2.70e4T + 4.18e8T^{2} \)
59 \( 1 + 7.31e3T + 7.14e8T^{2} \)
61 \( 1 - 8.77e3T + 8.44e8T^{2} \)
67 \( 1 + 3.03e4T + 1.35e9T^{2} \)
71 \( 1 + 3.32e4T + 1.80e9T^{2} \)
73 \( 1 - 1.31e4T + 2.07e9T^{2} \)
79 \( 1 + 5.71e4T + 3.07e9T^{2} \)
83 \( 1 - 4.87e4T + 3.93e9T^{2} \)
89 \( 1 + 3.99e4T + 5.58e9T^{2} \)
97 \( 1 + 4.59e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.630166763474941844057433867850, −7.65712552460877334908018672751, −6.52831443245821098516787379563, −6.00669824163442681498752104493, −5.36096744240325937764574300794, −4.50036740791622503080911028306, −3.73896164813804440717082358058, −2.74002677918973391188047987093, −1.15965726045491247144566825052, 0, 1.15965726045491247144566825052, 2.74002677918973391188047987093, 3.73896164813804440717082358058, 4.50036740791622503080911028306, 5.36096744240325937764574300794, 6.00669824163442681498752104493, 6.52831443245821098516787379563, 7.65712552460877334908018672751, 8.630166763474941844057433867850

Graph of the $Z$-function along the critical line