Properties

Label 2-1045-1.1-c5-0-154
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.5·2-s + 0.539·3-s + 78.6·4-s − 25·5-s − 5.67·6-s + 3.26·7-s − 490.·8-s − 242.·9-s + 262.·10-s − 121·11-s + 42.4·12-s + 723.·13-s − 34.3·14-s − 13.4·15-s + 2.64e3·16-s − 1.17e3·17-s + 2.55e3·18-s − 361·19-s − 1.96e3·20-s + 1.76·21-s + 1.27e3·22-s − 4.11e3·23-s − 265.·24-s + 625·25-s − 7.61e3·26-s − 262.·27-s + 256.·28-s + ⋯
L(s)  = 1  − 1.85·2-s + 0.0346·3-s + 2.45·4-s − 0.447·5-s − 0.0643·6-s + 0.0251·7-s − 2.71·8-s − 0.998·9-s + 0.831·10-s − 0.301·11-s + 0.0851·12-s + 1.18·13-s − 0.0467·14-s − 0.0154·15-s + 2.58·16-s − 0.986·17-s + 1.85·18-s − 0.229·19-s − 1.09·20-s + 0.000871·21-s + 0.560·22-s − 1.62·23-s − 0.0939·24-s + 0.200·25-s − 2.20·26-s − 0.0692·27-s + 0.0618·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 10.5T + 32T^{2} \)
3 \( 1 - 0.539T + 243T^{2} \)
7 \( 1 - 3.26T + 1.68e4T^{2} \)
13 \( 1 - 723.T + 3.71e5T^{2} \)
17 \( 1 + 1.17e3T + 1.41e6T^{2} \)
23 \( 1 + 4.11e3T + 6.43e6T^{2} \)
29 \( 1 + 1.04e3T + 2.05e7T^{2} \)
31 \( 1 - 9.33e3T + 2.86e7T^{2} \)
37 \( 1 - 5.59e3T + 6.93e7T^{2} \)
41 \( 1 - 3.91e3T + 1.15e8T^{2} \)
43 \( 1 - 1.13e4T + 1.47e8T^{2} \)
47 \( 1 - 9.96e3T + 2.29e8T^{2} \)
53 \( 1 - 2.17e4T + 4.18e8T^{2} \)
59 \( 1 + 6.07e3T + 7.14e8T^{2} \)
61 \( 1 + 1.57e4T + 8.44e8T^{2} \)
67 \( 1 + 2.21e4T + 1.35e9T^{2} \)
71 \( 1 - 3.24e4T + 1.80e9T^{2} \)
73 \( 1 - 5.28e4T + 2.07e9T^{2} \)
79 \( 1 + 1.03e5T + 3.07e9T^{2} \)
83 \( 1 + 1.08e5T + 3.93e9T^{2} \)
89 \( 1 - 6.91e4T + 5.58e9T^{2} \)
97 \( 1 - 5.58e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.549288211431731801403006118127, −8.313306023043150674202593524210, −7.48689530661248338821280465588, −6.39081974887100746061830006868, −5.90492470507722614335144899094, −4.20278046174516151350252351774, −2.92265330869630878148963183989, −2.08254614075567550231903155368, −0.857839998959105373249501586931, 0, 0.857839998959105373249501586931, 2.08254614075567550231903155368, 2.92265330869630878148963183989, 4.20278046174516151350252351774, 5.90492470507722614335144899094, 6.39081974887100746061830006868, 7.48689530661248338821280465588, 8.313306023043150674202593524210, 8.549288211431731801403006118127

Graph of the $Z$-function along the critical line