Properties

Label 2-1045-1.1-c5-0-129
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.53·2-s − 10.7·3-s − 19.4·4-s − 25·5-s − 38.0·6-s − 227.·7-s − 182.·8-s − 127.·9-s − 88.4·10-s − 121·11-s + 209.·12-s + 680.·13-s − 805.·14-s + 269.·15-s − 21.2·16-s + 547.·17-s − 450.·18-s − 361·19-s + 486.·20-s + 2.44e3·21-s − 428.·22-s − 1.90e3·23-s + 1.96e3·24-s + 625·25-s + 2.40e3·26-s + 3.98e3·27-s + 4.43e3·28-s + ⋯
L(s)  = 1  + 0.625·2-s − 0.690·3-s − 0.608·4-s − 0.447·5-s − 0.431·6-s − 1.75·7-s − 1.00·8-s − 0.523·9-s − 0.279·10-s − 0.301·11-s + 0.420·12-s + 1.11·13-s − 1.09·14-s + 0.308·15-s − 0.0207·16-s + 0.459·17-s − 0.327·18-s − 0.229·19-s + 0.272·20-s + 1.21·21-s − 0.188·22-s − 0.750·23-s + 0.694·24-s + 0.200·25-s + 0.698·26-s + 1.05·27-s + 1.06·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 3.53T + 32T^{2} \)
3 \( 1 + 10.7T + 243T^{2} \)
7 \( 1 + 227.T + 1.68e4T^{2} \)
13 \( 1 - 680.T + 3.71e5T^{2} \)
17 \( 1 - 547.T + 1.41e6T^{2} \)
23 \( 1 + 1.90e3T + 6.43e6T^{2} \)
29 \( 1 - 2.47e3T + 2.05e7T^{2} \)
31 \( 1 - 158.T + 2.86e7T^{2} \)
37 \( 1 - 3.33e3T + 6.93e7T^{2} \)
41 \( 1 + 4.44e3T + 1.15e8T^{2} \)
43 \( 1 - 1.67e4T + 1.47e8T^{2} \)
47 \( 1 + 1.07e4T + 2.29e8T^{2} \)
53 \( 1 + 8.99e3T + 4.18e8T^{2} \)
59 \( 1 + 2.85e3T + 7.14e8T^{2} \)
61 \( 1 - 9.12e3T + 8.44e8T^{2} \)
67 \( 1 + 2.44e4T + 1.35e9T^{2} \)
71 \( 1 + 9.79e3T + 1.80e9T^{2} \)
73 \( 1 - 2.90e4T + 2.07e9T^{2} \)
79 \( 1 - 7.61e4T + 3.07e9T^{2} \)
83 \( 1 + 6.87e4T + 3.93e9T^{2} \)
89 \( 1 + 3.78e3T + 5.58e9T^{2} \)
97 \( 1 + 7.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.827566296516099427192518248411, −8.031890204420600667816955574965, −6.65563548509785259501429286784, −6.08022645715183488732396513339, −5.49203710722015170945817828752, −4.31945246947356357740076361794, −3.50238811517882268716761865212, −2.83781699082540215201508620973, −0.75275270506533985103058763069, 0, 0.75275270506533985103058763069, 2.83781699082540215201508620973, 3.50238811517882268716761865212, 4.31945246947356357740076361794, 5.49203710722015170945817828752, 6.08022645715183488732396513339, 6.65563548509785259501429286784, 8.031890204420600667816955574965, 8.827566296516099427192518248411

Graph of the $Z$-function along the critical line