Properties

Label 2-1045-1.1-c5-0-249
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.5·2-s + 22.4·3-s + 80.2·4-s − 25·5-s − 238.·6-s + 228.·7-s − 511.·8-s + 261.·9-s + 264.·10-s − 121·11-s + 1.80e3·12-s − 327.·13-s − 2.41e3·14-s − 561.·15-s + 2.85e3·16-s − 132.·17-s − 2.77e3·18-s − 361·19-s − 2.00e3·20-s + 5.12e3·21-s + 1.28e3·22-s − 108.·23-s − 1.14e4·24-s + 625·25-s + 3.46e3·26-s + 418.·27-s + 1.83e4·28-s + ⋯
L(s)  = 1  − 1.87·2-s + 1.44·3-s + 2.50·4-s − 0.447·5-s − 2.69·6-s + 1.75·7-s − 2.82·8-s + 1.07·9-s + 0.837·10-s − 0.301·11-s + 3.61·12-s − 0.537·13-s − 3.29·14-s − 0.644·15-s + 2.78·16-s − 0.111·17-s − 2.01·18-s − 0.229·19-s − 1.12·20-s + 2.53·21-s + 0.564·22-s − 0.0427·23-s − 4.07·24-s + 0.200·25-s + 1.00·26-s + 0.110·27-s + 4.41·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 10.5T + 32T^{2} \)
3 \( 1 - 22.4T + 243T^{2} \)
7 \( 1 - 228.T + 1.68e4T^{2} \)
13 \( 1 + 327.T + 3.71e5T^{2} \)
17 \( 1 + 132.T + 1.41e6T^{2} \)
23 \( 1 + 108.T + 6.43e6T^{2} \)
29 \( 1 + 2.73e3T + 2.05e7T^{2} \)
31 \( 1 + 1.93e3T + 2.86e7T^{2} \)
37 \( 1 + 9.50e3T + 6.93e7T^{2} \)
41 \( 1 + 7.61e3T + 1.15e8T^{2} \)
43 \( 1 - 9.15e3T + 1.47e8T^{2} \)
47 \( 1 - 1.23e4T + 2.29e8T^{2} \)
53 \( 1 + 2.56e4T + 4.18e8T^{2} \)
59 \( 1 - 4.35e4T + 7.14e8T^{2} \)
61 \( 1 - 2.96e4T + 8.44e8T^{2} \)
67 \( 1 + 4.88e4T + 1.35e9T^{2} \)
71 \( 1 + 5.73e4T + 1.80e9T^{2} \)
73 \( 1 - 4.27e3T + 2.07e9T^{2} \)
79 \( 1 + 2.76e4T + 3.07e9T^{2} \)
83 \( 1 + 1.18e4T + 3.93e9T^{2} \)
89 \( 1 + 6.48e4T + 5.58e9T^{2} \)
97 \( 1 + 5.50e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.592284595385305308194717540113, −8.216818074116761491227236065084, −7.54092909481908968089663946202, −7.06430033288776239132074717346, −5.43065258412131434906076981745, −4.11044001958040015921067739710, −2.82505046191587721820419974228, −2.03550553149828098733277771001, −1.36886064127297674285616119331, 0, 1.36886064127297674285616119331, 2.03550553149828098733277771001, 2.82505046191587721820419974228, 4.11044001958040015921067739710, 5.43065258412131434906076981745, 7.06430033288776239132074717346, 7.54092909481908968089663946202, 8.216818074116761491227236065084, 8.592284595385305308194717540113

Graph of the $Z$-function along the critical line