Properties

Label 2-1045-1.1-c5-0-142
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.05·2-s + 5.26·3-s − 30.8·4-s − 25·5-s − 5.53·6-s − 191.·7-s + 66.0·8-s − 215.·9-s + 26.2·10-s − 121·11-s − 162.·12-s − 294.·13-s + 201.·14-s − 131.·15-s + 919.·16-s + 179.·17-s + 226.·18-s − 361·19-s + 772.·20-s − 1.00e3·21-s + 127.·22-s + 3.38e3·23-s + 348.·24-s + 625·25-s + 309.·26-s − 2.41e3·27-s + 5.91e3·28-s + ⋯
L(s)  = 1  − 0.185·2-s + 0.337·3-s − 0.965·4-s − 0.447·5-s − 0.0627·6-s − 1.47·7-s + 0.365·8-s − 0.885·9-s + 0.0830·10-s − 0.301·11-s − 0.326·12-s − 0.482·13-s + 0.274·14-s − 0.151·15-s + 0.897·16-s + 0.150·17-s + 0.164·18-s − 0.229·19-s + 0.431·20-s − 0.499·21-s + 0.0560·22-s + 1.33·23-s + 0.123·24-s + 0.200·25-s + 0.0896·26-s − 0.637·27-s + 1.42·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 1.05T + 32T^{2} \)
3 \( 1 - 5.26T + 243T^{2} \)
7 \( 1 + 191.T + 1.68e4T^{2} \)
13 \( 1 + 294.T + 3.71e5T^{2} \)
17 \( 1 - 179.T + 1.41e6T^{2} \)
23 \( 1 - 3.38e3T + 6.43e6T^{2} \)
29 \( 1 - 852.T + 2.05e7T^{2} \)
31 \( 1 - 5.31e3T + 2.86e7T^{2} \)
37 \( 1 - 1.13e4T + 6.93e7T^{2} \)
41 \( 1 - 9.73e3T + 1.15e8T^{2} \)
43 \( 1 + 1.21e4T + 1.47e8T^{2} \)
47 \( 1 + 1.73e4T + 2.29e8T^{2} \)
53 \( 1 - 3.06e4T + 4.18e8T^{2} \)
59 \( 1 + 2.97e4T + 7.14e8T^{2} \)
61 \( 1 - 3.49e4T + 8.44e8T^{2} \)
67 \( 1 - 2.74e4T + 1.35e9T^{2} \)
71 \( 1 + 7.00e4T + 1.80e9T^{2} \)
73 \( 1 - 7.42e4T + 2.07e9T^{2} \)
79 \( 1 + 7.63e4T + 3.07e9T^{2} \)
83 \( 1 + 8.85e4T + 3.93e9T^{2} \)
89 \( 1 - 5.74e4T + 5.58e9T^{2} \)
97 \( 1 + 1.71e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.786718350473030833441863799635, −8.164996344218953669297108852086, −7.21448653471827308319100476403, −6.23355914981654124815469302665, −5.28396275642439517441514969445, −4.30485019822873995427081095843, −3.28350653070660274841791366423, −2.69776270541399690220739996183, −0.801909334095125053779341696859, 0, 0.801909334095125053779341696859, 2.69776270541399690220739996183, 3.28350653070660274841791366423, 4.30485019822873995427081095843, 5.28396275642439517441514969445, 6.23355914981654124815469302665, 7.21448653471827308319100476403, 8.164996344218953669297108852086, 8.786718350473030833441863799635

Graph of the $Z$-function along the critical line