Properties

Label 2-1045-1.1-c5-0-168
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.93·2-s − 1.91·3-s + 3.20·4-s − 25·5-s + 11.3·6-s + 107.·7-s + 170.·8-s − 239.·9-s + 148.·10-s − 121·11-s − 6.12·12-s + 56.0·13-s − 638.·14-s + 47.8·15-s − 1.11e3·16-s − 393.·17-s + 1.41e3·18-s − 361·19-s − 80.0·20-s − 205.·21-s + 717.·22-s + 2.94e3·23-s − 327.·24-s + 625·25-s − 332.·26-s + 923.·27-s + 344.·28-s + ⋯
L(s)  = 1  − 1.04·2-s − 0.122·3-s + 0.100·4-s − 0.447·5-s + 0.128·6-s + 0.829·7-s + 0.943·8-s − 0.984·9-s + 0.469·10-s − 0.301·11-s − 0.0122·12-s + 0.0919·13-s − 0.870·14-s + 0.0549·15-s − 1.09·16-s − 0.330·17-s + 1.03·18-s − 0.229·19-s − 0.0447·20-s − 0.101·21-s + 0.316·22-s + 1.16·23-s − 0.115·24-s + 0.200·25-s − 0.0963·26-s + 0.243·27-s + 0.0830·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 5.93T + 32T^{2} \)
3 \( 1 + 1.91T + 243T^{2} \)
7 \( 1 - 107.T + 1.68e4T^{2} \)
13 \( 1 - 56.0T + 3.71e5T^{2} \)
17 \( 1 + 393.T + 1.41e6T^{2} \)
23 \( 1 - 2.94e3T + 6.43e6T^{2} \)
29 \( 1 - 4.64e3T + 2.05e7T^{2} \)
31 \( 1 + 6.75e3T + 2.86e7T^{2} \)
37 \( 1 - 3.14e3T + 6.93e7T^{2} \)
41 \( 1 - 1.68e4T + 1.15e8T^{2} \)
43 \( 1 + 2.09e4T + 1.47e8T^{2} \)
47 \( 1 + 1.13e4T + 2.29e8T^{2} \)
53 \( 1 + 3.32e4T + 4.18e8T^{2} \)
59 \( 1 + 2.64e3T + 7.14e8T^{2} \)
61 \( 1 - 5.48e4T + 8.44e8T^{2} \)
67 \( 1 + 6.47e4T + 1.35e9T^{2} \)
71 \( 1 - 5.45e4T + 1.80e9T^{2} \)
73 \( 1 - 2.59e4T + 2.07e9T^{2} \)
79 \( 1 + 6.12e4T + 3.07e9T^{2} \)
83 \( 1 - 3.26e4T + 3.93e9T^{2} \)
89 \( 1 - 1.02e5T + 5.58e9T^{2} \)
97 \( 1 - 1.63e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.677381406033723874727009638291, −8.154443635886284939779284086600, −7.45468872749643587422171992254, −6.43672101375243256733978026165, −5.16736669621288525780328338994, −4.59155868745467246290207325330, −3.27747081818845266963322350740, −2.04605282829403178562740626372, −0.922893283530352727535815489273, 0, 0.922893283530352727535815489273, 2.04605282829403178562740626372, 3.27747081818845266963322350740, 4.59155868745467246290207325330, 5.16736669621288525780328338994, 6.43672101375243256733978026165, 7.45468872749643587422171992254, 8.154443635886284939779284086600, 8.677381406033723874727009638291

Graph of the $Z$-function along the critical line