Properties

Label 2-1045-1.1-c5-0-136
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.00·2-s − 3.95·3-s + 17.0·4-s + 25·5-s + 27.6·6-s − 243.·7-s + 104.·8-s − 227.·9-s − 175.·10-s − 121·11-s − 67.2·12-s + 1.15e3·13-s + 1.70e3·14-s − 98.8·15-s − 1.27e3·16-s − 2.26e3·17-s + 1.59e3·18-s + 361·19-s + 425.·20-s + 961.·21-s + 847.·22-s − 955.·23-s − 414.·24-s + 625·25-s − 8.11e3·26-s + 1.85e3·27-s − 4.13e3·28-s + ⋯
L(s)  = 1  − 1.23·2-s − 0.253·3-s + 0.531·4-s + 0.447·5-s + 0.313·6-s − 1.87·7-s + 0.579·8-s − 0.935·9-s − 0.553·10-s − 0.301·11-s − 0.134·12-s + 1.90·13-s + 2.32·14-s − 0.113·15-s − 1.24·16-s − 1.89·17-s + 1.15·18-s + 0.229·19-s + 0.237·20-s + 0.475·21-s + 0.373·22-s − 0.376·23-s − 0.147·24-s + 0.200·25-s − 2.35·26-s + 0.491·27-s − 0.997·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 7.00T + 32T^{2} \)
3 \( 1 + 3.95T + 243T^{2} \)
7 \( 1 + 243.T + 1.68e4T^{2} \)
13 \( 1 - 1.15e3T + 3.71e5T^{2} \)
17 \( 1 + 2.26e3T + 1.41e6T^{2} \)
23 \( 1 + 955.T + 6.43e6T^{2} \)
29 \( 1 + 5.18e3T + 2.05e7T^{2} \)
31 \( 1 - 5.36e3T + 2.86e7T^{2} \)
37 \( 1 - 4.32e3T + 6.93e7T^{2} \)
41 \( 1 + 30.2T + 1.15e8T^{2} \)
43 \( 1 - 6.40e3T + 1.47e8T^{2} \)
47 \( 1 + 9.53e3T + 2.29e8T^{2} \)
53 \( 1 - 1.97e4T + 4.18e8T^{2} \)
59 \( 1 + 1.20e4T + 7.14e8T^{2} \)
61 \( 1 - 3.00e4T + 8.44e8T^{2} \)
67 \( 1 + 4.97e4T + 1.35e9T^{2} \)
71 \( 1 + 5.26e4T + 1.80e9T^{2} \)
73 \( 1 - 5.90e3T + 2.07e9T^{2} \)
79 \( 1 - 7.31e4T + 3.07e9T^{2} \)
83 \( 1 + 1.09e4T + 3.93e9T^{2} \)
89 \( 1 + 9.95e4T + 5.58e9T^{2} \)
97 \( 1 - 6.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.909492267269622418743821885566, −8.335255768697880960843805509492, −7.05417363826051116117129388771, −6.29846417280991152811904638208, −5.81861966231975313314489477035, −4.26868027541141043497679969848, −3.18672305771890795165081433081, −2.14917107432243905716100364094, −0.77459490512694088153368973145, 0, 0.77459490512694088153368973145, 2.14917107432243905716100364094, 3.18672305771890795165081433081, 4.26868027541141043497679969848, 5.81861966231975313314489477035, 6.29846417280991152811904638208, 7.05417363826051116117129388771, 8.335255768697880960843805509492, 8.909492267269622418743821885566

Graph of the $Z$-function along the critical line