Properties

Label 2-1045-1.1-c5-0-195
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.55·2-s − 7.71·3-s + 59.2·4-s + 25·5-s + 73.7·6-s + 175.·7-s − 260.·8-s − 183.·9-s − 238.·10-s − 121·11-s − 457.·12-s − 84.5·13-s − 1.67e3·14-s − 192.·15-s + 589.·16-s − 736.·17-s + 1.75e3·18-s + 361·19-s + 1.48e3·20-s − 1.35e3·21-s + 1.15e3·22-s + 3.31e3·23-s + 2.00e3·24-s + 625·25-s + 807.·26-s + 3.29e3·27-s + 1.03e4·28-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.495·3-s + 1.85·4-s + 0.447·5-s + 0.836·6-s + 1.35·7-s − 1.43·8-s − 0.754·9-s − 0.755·10-s − 0.301·11-s − 0.916·12-s − 0.138·13-s − 2.28·14-s − 0.221·15-s + 0.575·16-s − 0.618·17-s + 1.27·18-s + 0.229·19-s + 0.827·20-s − 0.670·21-s + 0.509·22-s + 1.30·23-s + 0.711·24-s + 0.200·25-s + 0.234·26-s + 0.868·27-s + 2.50·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 9.55T + 32T^{2} \)
3 \( 1 + 7.71T + 243T^{2} \)
7 \( 1 - 175.T + 1.68e4T^{2} \)
13 \( 1 + 84.5T + 3.71e5T^{2} \)
17 \( 1 + 736.T + 1.41e6T^{2} \)
23 \( 1 - 3.31e3T + 6.43e6T^{2} \)
29 \( 1 + 1.61e3T + 2.05e7T^{2} \)
31 \( 1 - 256.T + 2.86e7T^{2} \)
37 \( 1 + 1.04e4T + 6.93e7T^{2} \)
41 \( 1 - 1.69e4T + 1.15e8T^{2} \)
43 \( 1 + 7.98e3T + 1.47e8T^{2} \)
47 \( 1 - 5.24e3T + 2.29e8T^{2} \)
53 \( 1 + 7.15e3T + 4.18e8T^{2} \)
59 \( 1 + 1.77e4T + 7.14e8T^{2} \)
61 \( 1 + 5.05e4T + 8.44e8T^{2} \)
67 \( 1 - 4.01e4T + 1.35e9T^{2} \)
71 \( 1 + 4.78e4T + 1.80e9T^{2} \)
73 \( 1 - 1.10e4T + 2.07e9T^{2} \)
79 \( 1 - 7.76e4T + 3.07e9T^{2} \)
83 \( 1 + 8.46e4T + 3.93e9T^{2} \)
89 \( 1 - 2.31e4T + 5.58e9T^{2} \)
97 \( 1 - 1.55e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.848434552392617528069295279302, −8.108216689518001381066027452764, −7.38148878297149848356628444177, −6.49456823796116702856302387803, −5.46781547374723429271575042546, −4.69444991456693005135623868737, −2.85159652694021744583849814019, −1.90036041268710053730390271576, −1.04045600342646323694842908129, 0, 1.04045600342646323694842908129, 1.90036041268710053730390271576, 2.85159652694021744583849814019, 4.69444991456693005135623868737, 5.46781547374723429271575042546, 6.49456823796116702856302387803, 7.38148878297149848356628444177, 8.108216689518001381066027452764, 8.848434552392617528069295279302

Graph of the $Z$-function along the critical line