Properties

Label 2-1045-1.1-c5-0-267
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.88·2-s + 14.8·3-s + 2.63·4-s + 25·5-s + 87.2·6-s − 140.·7-s − 172.·8-s − 23.3·9-s + 147.·10-s − 121·11-s + 39.0·12-s + 993.·13-s − 825.·14-s + 370.·15-s − 1.10e3·16-s + 2.06e3·17-s − 137.·18-s + 361·19-s + 65.9·20-s − 2.07e3·21-s − 712.·22-s − 1.36e3·23-s − 2.56e3·24-s + 625·25-s + 5.84e3·26-s − 3.94e3·27-s − 369.·28-s + ⋯
L(s)  = 1  + 1.04·2-s + 0.950·3-s + 0.0824·4-s + 0.447·5-s + 0.989·6-s − 1.08·7-s − 0.954·8-s − 0.0959·9-s + 0.465·10-s − 0.301·11-s + 0.0783·12-s + 1.63·13-s − 1.12·14-s + 0.425·15-s − 1.07·16-s + 1.73·17-s − 0.0998·18-s + 0.229·19-s + 0.0368·20-s − 1.02·21-s − 0.313·22-s − 0.538·23-s − 0.907·24-s + 0.200·25-s + 1.69·26-s − 1.04·27-s − 0.0891·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 5.88T + 32T^{2} \)
3 \( 1 - 14.8T + 243T^{2} \)
7 \( 1 + 140.T + 1.68e4T^{2} \)
13 \( 1 - 993.T + 3.71e5T^{2} \)
17 \( 1 - 2.06e3T + 1.41e6T^{2} \)
23 \( 1 + 1.36e3T + 6.43e6T^{2} \)
29 \( 1 + 4.16e3T + 2.05e7T^{2} \)
31 \( 1 - 3.11e3T + 2.86e7T^{2} \)
37 \( 1 - 1.24e3T + 6.93e7T^{2} \)
41 \( 1 + 8.05e3T + 1.15e8T^{2} \)
43 \( 1 + 2.26e4T + 1.47e8T^{2} \)
47 \( 1 + 1.19e4T + 2.29e8T^{2} \)
53 \( 1 - 3.79e4T + 4.18e8T^{2} \)
59 \( 1 + 3.03e4T + 7.14e8T^{2} \)
61 \( 1 - 5.22e3T + 8.44e8T^{2} \)
67 \( 1 - 1.01e4T + 1.35e9T^{2} \)
71 \( 1 + 7.52e4T + 1.80e9T^{2} \)
73 \( 1 + 2.24e4T + 2.07e9T^{2} \)
79 \( 1 + 8.90e4T + 3.07e9T^{2} \)
83 \( 1 + 9.20e4T + 3.93e9T^{2} \)
89 \( 1 + 5.50e4T + 5.58e9T^{2} \)
97 \( 1 + 7.16e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.701850824259951527982211887851, −8.164887285147009232213561112321, −6.88050299169822002380805525551, −5.85547864502808538178923850738, −5.56994138247298321157742762701, −4.08743756461220867234104864957, −3.26334819128414106023058733365, −2.99466932296359106030326136260, −1.50954253893343967574795743507, 0, 1.50954253893343967574795743507, 2.99466932296359106030326136260, 3.26334819128414106023058733365, 4.08743756461220867234104864957, 5.56994138247298321157742762701, 5.85547864502808538178923850738, 6.88050299169822002380805525551, 8.164887285147009232213561112321, 8.701850824259951527982211887851

Graph of the $Z$-function along the critical line