Properties

Label 2-1045-1.1-c5-0-279
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.60·2-s + 16.2·3-s − 0.624·4-s + 25·5-s + 91.0·6-s + 52.0·7-s − 182.·8-s + 21.0·9-s + 140.·10-s − 121·11-s − 10.1·12-s + 57.9·13-s + 291.·14-s + 406.·15-s − 1.00e3·16-s − 1.40e3·17-s + 117.·18-s + 361·19-s − 15.6·20-s + 846.·21-s − 677.·22-s + 3.31e3·23-s − 2.96e3·24-s + 625·25-s + 324.·26-s − 3.60e3·27-s − 32.5·28-s + ⋯
L(s)  = 1  + 0.990·2-s + 1.04·3-s − 0.0195·4-s + 0.447·5-s + 1.03·6-s + 0.401·7-s − 1.00·8-s + 0.0864·9-s + 0.442·10-s − 0.301·11-s − 0.0203·12-s + 0.0951·13-s + 0.397·14-s + 0.466·15-s − 0.980·16-s − 1.18·17-s + 0.0856·18-s + 0.229·19-s − 0.00873·20-s + 0.418·21-s − 0.298·22-s + 1.30·23-s − 1.05·24-s + 0.200·25-s + 0.0942·26-s − 0.952·27-s − 0.00784·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 5.60T + 32T^{2} \)
3 \( 1 - 16.2T + 243T^{2} \)
7 \( 1 - 52.0T + 1.68e4T^{2} \)
13 \( 1 - 57.9T + 3.71e5T^{2} \)
17 \( 1 + 1.40e3T + 1.41e6T^{2} \)
23 \( 1 - 3.31e3T + 6.43e6T^{2} \)
29 \( 1 - 4.18e3T + 2.05e7T^{2} \)
31 \( 1 - 505.T + 2.86e7T^{2} \)
37 \( 1 + 3.49e3T + 6.93e7T^{2} \)
41 \( 1 + 1.12e4T + 1.15e8T^{2} \)
43 \( 1 + 1.47e4T + 1.47e8T^{2} \)
47 \( 1 - 1.75e4T + 2.29e8T^{2} \)
53 \( 1 + 2.89e4T + 4.18e8T^{2} \)
59 \( 1 + 1.51e4T + 7.14e8T^{2} \)
61 \( 1 + 1.90e4T + 8.44e8T^{2} \)
67 \( 1 + 5.97e4T + 1.35e9T^{2} \)
71 \( 1 + 1.89e4T + 1.80e9T^{2} \)
73 \( 1 + 7.64e4T + 2.07e9T^{2} \)
79 \( 1 - 1.66e4T + 3.07e9T^{2} \)
83 \( 1 + 3.33e3T + 3.93e9T^{2} \)
89 \( 1 - 9.26e4T + 5.58e9T^{2} \)
97 \( 1 + 1.38e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.837224080665176340147944706252, −8.130919163788625568064954074003, −6.97522292003959783152507856482, −6.08126174850235334442233522823, −5.06534424977092451625737444372, −4.47036815930353098944503487105, −3.26496285625453768747918622962, −2.74680954868789996694538274161, −1.62543456040358881647504873421, 0, 1.62543456040358881647504873421, 2.74680954868789996694538274161, 3.26496285625453768747918622962, 4.47036815930353098944503487105, 5.06534424977092451625737444372, 6.08126174850235334442233522823, 6.97522292003959783152507856482, 8.130919163788625568064954074003, 8.837224080665176340147944706252

Graph of the $Z$-function along the critical line