Properties

Label 2-1045-1.1-c5-0-175
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.58·2-s + 14.9·3-s + 41.7·4-s − 25·5-s − 128.·6-s − 101.·7-s − 83.9·8-s − 18.0·9-s + 214.·10-s + 121·11-s + 626.·12-s − 1.10e3·13-s + 874.·14-s − 374.·15-s − 615.·16-s + 12.4·17-s + 155.·18-s + 361·19-s − 1.04e3·20-s − 1.52e3·21-s − 1.03e3·22-s + 4.62e3·23-s − 1.25e3·24-s + 625·25-s + 9.50e3·26-s − 3.91e3·27-s − 4.25e3·28-s + ⋯
L(s)  = 1  − 1.51·2-s + 0.962·3-s + 1.30·4-s − 0.447·5-s − 1.46·6-s − 0.785·7-s − 0.464·8-s − 0.0743·9-s + 0.679·10-s + 0.301·11-s + 1.25·12-s − 1.81·13-s + 1.19·14-s − 0.430·15-s − 0.601·16-s + 0.0104·17-s + 0.112·18-s + 0.229·19-s − 0.583·20-s − 0.755·21-s − 0.457·22-s + 1.82·23-s − 0.446·24-s + 0.200·25-s + 2.75·26-s − 1.03·27-s − 1.02·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 8.58T + 32T^{2} \)
3 \( 1 - 14.9T + 243T^{2} \)
7 \( 1 + 101.T + 1.68e4T^{2} \)
13 \( 1 + 1.10e3T + 3.71e5T^{2} \)
17 \( 1 - 12.4T + 1.41e6T^{2} \)
23 \( 1 - 4.62e3T + 6.43e6T^{2} \)
29 \( 1 - 2.48e3T + 2.05e7T^{2} \)
31 \( 1 + 2.45e3T + 2.86e7T^{2} \)
37 \( 1 + 5.18e3T + 6.93e7T^{2} \)
41 \( 1 - 1.63e4T + 1.15e8T^{2} \)
43 \( 1 + 603.T + 1.47e8T^{2} \)
47 \( 1 - 2.66e4T + 2.29e8T^{2} \)
53 \( 1 - 3.49e4T + 4.18e8T^{2} \)
59 \( 1 - 4.06e4T + 7.14e8T^{2} \)
61 \( 1 - 3.80e3T + 8.44e8T^{2} \)
67 \( 1 - 2.35e3T + 1.35e9T^{2} \)
71 \( 1 + 1.78e4T + 1.80e9T^{2} \)
73 \( 1 - 3.62e4T + 2.07e9T^{2} \)
79 \( 1 + 4.11e4T + 3.07e9T^{2} \)
83 \( 1 + 1.05e5T + 3.93e9T^{2} \)
89 \( 1 + 4.95e4T + 5.58e9T^{2} \)
97 \( 1 - 1.43e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.936202807866533018406167131544, −8.144337288140014433019034709580, −7.18474963845538277517981568126, −7.02482285577825087770870951457, −5.41635384828015622598582484078, −4.15031381432207188333502507381, −2.90583301719626174181763170478, −2.38101144512483499032116491894, −0.940327474924677605346032730494, 0, 0.940327474924677605346032730494, 2.38101144512483499032116491894, 2.90583301719626174181763170478, 4.15031381432207188333502507381, 5.41635384828015622598582484078, 7.02482285577825087770870951457, 7.18474963845538277517981568126, 8.144337288140014433019034709580, 8.936202807866533018406167131544

Graph of the $Z$-function along the critical line