Properties

Label 2-1045-1.1-c5-0-122
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.20·2-s − 16.1·3-s + 52.7·4-s − 25·5-s + 148.·6-s − 66.9·7-s − 191.·8-s + 18.4·9-s + 230.·10-s + 121·11-s − 853.·12-s + 504.·13-s + 616.·14-s + 404.·15-s + 72.7·16-s − 1.42e3·17-s − 169.·18-s + 361·19-s − 1.31e3·20-s + 1.08e3·21-s − 1.11e3·22-s + 1.50e3·23-s + 3.09e3·24-s + 625·25-s − 4.64e3·26-s + 3.63e3·27-s − 3.53e3·28-s + ⋯
L(s)  = 1  − 1.62·2-s − 1.03·3-s + 1.64·4-s − 0.447·5-s + 1.68·6-s − 0.516·7-s − 1.05·8-s + 0.0759·9-s + 0.727·10-s + 0.301·11-s − 1.71·12-s + 0.827·13-s + 0.840·14-s + 0.463·15-s + 0.0710·16-s − 1.19·17-s − 0.123·18-s + 0.229·19-s − 0.737·20-s + 0.535·21-s − 0.490·22-s + 0.593·23-s + 1.09·24-s + 0.200·25-s − 1.34·26-s + 0.958·27-s − 0.851·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 9.20T + 32T^{2} \)
3 \( 1 + 16.1T + 243T^{2} \)
7 \( 1 + 66.9T + 1.68e4T^{2} \)
13 \( 1 - 504.T + 3.71e5T^{2} \)
17 \( 1 + 1.42e3T + 1.41e6T^{2} \)
23 \( 1 - 1.50e3T + 6.43e6T^{2} \)
29 \( 1 + 5.73e3T + 2.05e7T^{2} \)
31 \( 1 + 62.2T + 2.86e7T^{2} \)
37 \( 1 + 9.66e3T + 6.93e7T^{2} \)
41 \( 1 + 6.01e3T + 1.15e8T^{2} \)
43 \( 1 - 2.00e4T + 1.47e8T^{2} \)
47 \( 1 - 8.37e3T + 2.29e8T^{2} \)
53 \( 1 + 2.49e4T + 4.18e8T^{2} \)
59 \( 1 + 4.53e4T + 7.14e8T^{2} \)
61 \( 1 - 1.91e4T + 8.44e8T^{2} \)
67 \( 1 - 3.19e4T + 1.35e9T^{2} \)
71 \( 1 - 7.42e4T + 1.80e9T^{2} \)
73 \( 1 + 6.68e4T + 2.07e9T^{2} \)
79 \( 1 + 3.80e4T + 3.07e9T^{2} \)
83 \( 1 + 1.13e4T + 3.93e9T^{2} \)
89 \( 1 + 2.84e4T + 5.58e9T^{2} \)
97 \( 1 - 1.33e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.927878905718990587375506580291, −8.106489478861840374174115803744, −7.08459199526177964586877123205, −6.55312785296354855423392287706, −5.68309770834173577800311178523, −4.45115664353372300387682144945, −3.18955013662177851812605147419, −1.81730299075013830258390759461, −0.73083061147956870457655406326, 0, 0.73083061147956870457655406326, 1.81730299075013830258390759461, 3.18955013662177851812605147419, 4.45115664353372300387682144945, 5.68309770834173577800311178523, 6.55312785296354855423392287706, 7.08459199526177964586877123205, 8.106489478861840374174115803744, 8.927878905718990587375506580291

Graph of the $Z$-function along the critical line