Properties

Label 2-1045-1.1-c5-0-294
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.93·2-s + 24.4·3-s + 30.9·4-s − 25·5-s + 194.·6-s − 71.9·7-s − 8.40·8-s + 355.·9-s − 198.·10-s + 121·11-s + 756.·12-s − 338.·13-s − 570.·14-s − 611.·15-s − 1.05e3·16-s − 308.·17-s + 2.82e3·18-s + 361·19-s − 773.·20-s − 1.75e3·21-s + 959.·22-s − 3.59e3·23-s − 205.·24-s + 625·25-s − 2.68e3·26-s + 2.75e3·27-s − 2.22e3·28-s + ⋯
L(s)  = 1  + 1.40·2-s + 1.56·3-s + 0.966·4-s − 0.447·5-s + 2.20·6-s − 0.554·7-s − 0.0464·8-s + 1.46·9-s − 0.627·10-s + 0.301·11-s + 1.51·12-s − 0.555·13-s − 0.777·14-s − 0.701·15-s − 1.03·16-s − 0.258·17-s + 2.05·18-s + 0.229·19-s − 0.432·20-s − 0.870·21-s + 0.422·22-s − 1.41·23-s − 0.0728·24-s + 0.200·25-s − 0.778·26-s + 0.726·27-s − 0.536·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 7.93T + 32T^{2} \)
3 \( 1 - 24.4T + 243T^{2} \)
7 \( 1 + 71.9T + 1.68e4T^{2} \)
13 \( 1 + 338.T + 3.71e5T^{2} \)
17 \( 1 + 308.T + 1.41e6T^{2} \)
23 \( 1 + 3.59e3T + 6.43e6T^{2} \)
29 \( 1 + 2.01e3T + 2.05e7T^{2} \)
31 \( 1 - 849.T + 2.86e7T^{2} \)
37 \( 1 + 5.71T + 6.93e7T^{2} \)
41 \( 1 + 2.14e3T + 1.15e8T^{2} \)
43 \( 1 + 2.03e4T + 1.47e8T^{2} \)
47 \( 1 + 6.40e3T + 2.29e8T^{2} \)
53 \( 1 - 3.51e4T + 4.18e8T^{2} \)
59 \( 1 - 9.13e3T + 7.14e8T^{2} \)
61 \( 1 + 1.97e4T + 8.44e8T^{2} \)
67 \( 1 + 2.69e4T + 1.35e9T^{2} \)
71 \( 1 - 4.23e4T + 1.80e9T^{2} \)
73 \( 1 + 5.07e4T + 2.07e9T^{2} \)
79 \( 1 - 2.25e4T + 3.07e9T^{2} \)
83 \( 1 + 2.68e4T + 3.93e9T^{2} \)
89 \( 1 - 1.08e5T + 5.58e9T^{2} \)
97 \( 1 - 1.62e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.733930032299892847907045090121, −7.902873492465089342678604913587, −7.04007661574592936468732452854, −6.20057561131571683681831022443, −5.02701478640325281203794051909, −4.06111800465758981707040253547, −3.53315365787363365658034786550, −2.75849856336231454943754098787, −1.88258002690620215526444186413, 0, 1.88258002690620215526444186413, 2.75849856336231454943754098787, 3.53315365787363365658034786550, 4.06111800465758981707040253547, 5.02701478640325281203794051909, 6.20057561131571683681831022443, 7.04007661574592936468732452854, 7.902873492465089342678604913587, 8.733930032299892847907045090121

Graph of the $Z$-function along the critical line