Properties

Label 2-1045-1.1-c5-0-207
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.82·2-s − 0.0989·3-s − 8.73·4-s − 25·5-s − 0.477·6-s − 108.·7-s − 196.·8-s − 242.·9-s − 120.·10-s + 121·11-s + 0.864·12-s + 1.11e3·13-s − 521.·14-s + 2.47·15-s − 667.·16-s + 599.·17-s − 1.17e3·18-s + 361·19-s + 218.·20-s + 10.7·21-s + 583.·22-s + 2.33e3·23-s + 19.4·24-s + 625·25-s + 5.39e3·26-s + 48.0·27-s + 945.·28-s + ⋯
L(s)  = 1  + 0.852·2-s − 0.00634·3-s − 0.273·4-s − 0.447·5-s − 0.00541·6-s − 0.834·7-s − 1.08·8-s − 0.999·9-s − 0.381·10-s + 0.301·11-s + 0.00173·12-s + 1.83·13-s − 0.711·14-s + 0.00283·15-s − 0.652·16-s + 0.503·17-s − 0.852·18-s + 0.229·19-s + 0.122·20-s + 0.00529·21-s + 0.257·22-s + 0.922·23-s + 0.00688·24-s + 0.200·25-s + 1.56·26-s + 0.0126·27-s + 0.227·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 4.82T + 32T^{2} \)
3 \( 1 + 0.0989T + 243T^{2} \)
7 \( 1 + 108.T + 1.68e4T^{2} \)
13 \( 1 - 1.11e3T + 3.71e5T^{2} \)
17 \( 1 - 599.T + 1.41e6T^{2} \)
23 \( 1 - 2.33e3T + 6.43e6T^{2} \)
29 \( 1 - 1.88e3T + 2.05e7T^{2} \)
31 \( 1 + 3.86e3T + 2.86e7T^{2} \)
37 \( 1 - 576.T + 6.93e7T^{2} \)
41 \( 1 - 3.45e3T + 1.15e8T^{2} \)
43 \( 1 + 126.T + 1.47e8T^{2} \)
47 \( 1 - 3.47e3T + 2.29e8T^{2} \)
53 \( 1 - 9.58e3T + 4.18e8T^{2} \)
59 \( 1 - 2.42e4T + 7.14e8T^{2} \)
61 \( 1 + 5.14e4T + 8.44e8T^{2} \)
67 \( 1 + 4.12e4T + 1.35e9T^{2} \)
71 \( 1 - 2.43e4T + 1.80e9T^{2} \)
73 \( 1 + 1.16e4T + 2.07e9T^{2} \)
79 \( 1 + 2.64e4T + 3.07e9T^{2} \)
83 \( 1 + 7.21e4T + 3.93e9T^{2} \)
89 \( 1 - 6.54e4T + 5.58e9T^{2} \)
97 \( 1 + 1.41e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.856710227064230866027405168593, −8.085549145957638016172908790923, −6.78593094339618399994140421828, −6.01509191745850361529436834014, −5.42611438900514069176645994554, −4.23094357052755147962443472740, −3.43269123926575191971926471219, −2.93936917524403993018831903474, −1.07791609755484122156185219515, 0, 1.07791609755484122156185219515, 2.93936917524403993018831903474, 3.43269123926575191971926471219, 4.23094357052755147962443472740, 5.42611438900514069176645994554, 6.01509191745850361529436834014, 6.78593094339618399994140421828, 8.085549145957638016172908790923, 8.856710227064230866027405168593

Graph of the $Z$-function along the critical line