Properties

Label 2-1045-1.1-c5-0-170
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.18·2-s − 14.4·3-s − 14.5·4-s − 25·5-s − 60.4·6-s + 39.8·7-s − 194.·8-s − 34.2·9-s − 104.·10-s + 121·11-s + 209.·12-s + 251.·13-s + 166.·14-s + 361.·15-s − 348.·16-s − 947.·17-s − 143.·18-s + 361·19-s + 362.·20-s − 575.·21-s + 505.·22-s − 3.71e3·23-s + 2.80e3·24-s + 625·25-s + 1.05e3·26-s + 4.00e3·27-s − 578.·28-s + ⋯
L(s)  = 1  + 0.739·2-s − 0.926·3-s − 0.453·4-s − 0.447·5-s − 0.684·6-s + 0.307·7-s − 1.07·8-s − 0.141·9-s − 0.330·10-s + 0.301·11-s + 0.420·12-s + 0.412·13-s + 0.227·14-s + 0.414·15-s − 0.340·16-s − 0.795·17-s − 0.104·18-s + 0.229·19-s + 0.202·20-s − 0.285·21-s + 0.222·22-s − 1.46·23-s + 0.995·24-s + 0.200·25-s + 0.304·26-s + 1.05·27-s − 0.139·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 4.18T + 32T^{2} \)
3 \( 1 + 14.4T + 243T^{2} \)
7 \( 1 - 39.8T + 1.68e4T^{2} \)
13 \( 1 - 251.T + 3.71e5T^{2} \)
17 \( 1 + 947.T + 1.41e6T^{2} \)
23 \( 1 + 3.71e3T + 6.43e6T^{2} \)
29 \( 1 - 1.77e3T + 2.05e7T^{2} \)
31 \( 1 - 9.72e3T + 2.86e7T^{2} \)
37 \( 1 + 1.01e4T + 6.93e7T^{2} \)
41 \( 1 - 2.83e3T + 1.15e8T^{2} \)
43 \( 1 - 1.97e4T + 1.47e8T^{2} \)
47 \( 1 - 4.08e3T + 2.29e8T^{2} \)
53 \( 1 - 1.17e4T + 4.18e8T^{2} \)
59 \( 1 - 3.13e4T + 7.14e8T^{2} \)
61 \( 1 + 4.12e4T + 8.44e8T^{2} \)
67 \( 1 - 7.14e4T + 1.35e9T^{2} \)
71 \( 1 + 2.88e4T + 1.80e9T^{2} \)
73 \( 1 - 5.69e4T + 2.07e9T^{2} \)
79 \( 1 + 5.59e3T + 3.07e9T^{2} \)
83 \( 1 - 7.09e4T + 3.93e9T^{2} \)
89 \( 1 + 2.36e4T + 5.58e9T^{2} \)
97 \( 1 - 1.31e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.650787457823790122286223474184, −8.073101365249101856343578734112, −6.69207544555470641726918976128, −6.08240679343581817019584424958, −5.25043158227736145601980154265, −4.46717440314353153820693731656, −3.76643373659113313985663359169, −2.55128503841518561007687393156, −0.927769801141481119556434465154, 0, 0.927769801141481119556434465154, 2.55128503841518561007687393156, 3.76643373659113313985663359169, 4.46717440314353153820693731656, 5.25043158227736145601980154265, 6.08240679343581817019584424958, 6.69207544555470641726918976128, 8.073101365249101856343578734112, 8.650787457823790122286223474184

Graph of the $Z$-function along the critical line