Properties

Label 2-1045-1.1-c5-0-128
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.16·2-s − 15.7·3-s − 14.6·4-s − 25·5-s − 65.7·6-s − 177.·7-s − 194.·8-s + 6.42·9-s − 104.·10-s + 121·11-s + 231.·12-s − 531.·13-s − 737.·14-s + 394.·15-s − 341.·16-s + 1.44e3·17-s + 26.7·18-s + 361·19-s + 366.·20-s + 2.79e3·21-s + 504.·22-s − 2.14e3·23-s + 3.06e3·24-s + 625·25-s − 2.21e3·26-s + 3.73e3·27-s + 2.59e3·28-s + ⋯
L(s)  = 1  + 0.736·2-s − 1.01·3-s − 0.457·4-s − 0.447·5-s − 0.746·6-s − 1.36·7-s − 1.07·8-s + 0.0264·9-s − 0.329·10-s + 0.301·11-s + 0.463·12-s − 0.872·13-s − 1.00·14-s + 0.453·15-s − 0.333·16-s + 1.21·17-s + 0.0194·18-s + 0.229·19-s + 0.204·20-s + 1.38·21-s + 0.222·22-s − 0.846·23-s + 1.08·24-s + 0.200·25-s − 0.642·26-s + 0.986·27-s + 0.624·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 4.16T + 32T^{2} \)
3 \( 1 + 15.7T + 243T^{2} \)
7 \( 1 + 177.T + 1.68e4T^{2} \)
13 \( 1 + 531.T + 3.71e5T^{2} \)
17 \( 1 - 1.44e3T + 1.41e6T^{2} \)
23 \( 1 + 2.14e3T + 6.43e6T^{2} \)
29 \( 1 + 564.T + 2.05e7T^{2} \)
31 \( 1 + 950.T + 2.86e7T^{2} \)
37 \( 1 - 1.29e4T + 6.93e7T^{2} \)
41 \( 1 - 2.10e3T + 1.15e8T^{2} \)
43 \( 1 + 1.26e4T + 1.47e8T^{2} \)
47 \( 1 - 8.52e3T + 2.29e8T^{2} \)
53 \( 1 - 3.74e3T + 4.18e8T^{2} \)
59 \( 1 - 3.17e4T + 7.14e8T^{2} \)
61 \( 1 - 2.73e4T + 8.44e8T^{2} \)
67 \( 1 + 2.66e4T + 1.35e9T^{2} \)
71 \( 1 + 5.23e4T + 1.80e9T^{2} \)
73 \( 1 + 1.34e4T + 2.07e9T^{2} \)
79 \( 1 + 3.24e4T + 3.07e9T^{2} \)
83 \( 1 - 4.28e4T + 3.93e9T^{2} \)
89 \( 1 + 8.16e4T + 5.58e9T^{2} \)
97 \( 1 - 9.88e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.917893306776499316179926105765, −7.79757589595198917040457458599, −6.76735208529339583511528798309, −5.97216707311696320661720378808, −5.43700268482721085413544010270, −4.45059097976514859492384345442, −3.56692175079758058199295927837, −2.76676459080675261690632314931, −0.75121472734852799101567191390, 0, 0.75121472734852799101567191390, 2.76676459080675261690632314931, 3.56692175079758058199295927837, 4.45059097976514859492384345442, 5.43700268482721085413544010270, 5.97216707311696320661720378808, 6.76735208529339583511528798309, 7.79757589595198917040457458599, 8.917893306776499316179926105765

Graph of the $Z$-function along the critical line