Properties

Label 2-1045-1.1-c5-0-235
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.69·2-s + 12.5·3-s − 29.1·4-s − 25·5-s + 21.2·6-s + 107.·7-s − 103.·8-s − 85.6·9-s − 42.4·10-s + 121·11-s − 365.·12-s + 351.·13-s + 182.·14-s − 313.·15-s + 755.·16-s − 1.40e3·17-s − 145.·18-s + 361·19-s + 728.·20-s + 1.35e3·21-s + 205.·22-s + 1.20e3·23-s − 1.30e3·24-s + 625·25-s + 595.·26-s − 4.12e3·27-s − 3.13e3·28-s + ⋯
L(s)  = 1  + 0.299·2-s + 0.804·3-s − 0.910·4-s − 0.447·5-s + 0.241·6-s + 0.831·7-s − 0.572·8-s − 0.352·9-s − 0.134·10-s + 0.301·11-s − 0.732·12-s + 0.576·13-s + 0.249·14-s − 0.359·15-s + 0.738·16-s − 1.17·17-s − 0.105·18-s + 0.229·19-s + 0.406·20-s + 0.668·21-s + 0.0904·22-s + 0.473·23-s − 0.460·24-s + 0.200·25-s + 0.172·26-s − 1.08·27-s − 0.756·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 1.69T + 32T^{2} \)
3 \( 1 - 12.5T + 243T^{2} \)
7 \( 1 - 107.T + 1.68e4T^{2} \)
13 \( 1 - 351.T + 3.71e5T^{2} \)
17 \( 1 + 1.40e3T + 1.41e6T^{2} \)
23 \( 1 - 1.20e3T + 6.43e6T^{2} \)
29 \( 1 + 644.T + 2.05e7T^{2} \)
31 \( 1 - 3.54e3T + 2.86e7T^{2} \)
37 \( 1 - 9.60e3T + 6.93e7T^{2} \)
41 \( 1 + 9.24e3T + 1.15e8T^{2} \)
43 \( 1 + 7.06e3T + 1.47e8T^{2} \)
47 \( 1 + 1.36e4T + 2.29e8T^{2} \)
53 \( 1 - 3.89e4T + 4.18e8T^{2} \)
59 \( 1 - 3.36e4T + 7.14e8T^{2} \)
61 \( 1 - 2.97e4T + 8.44e8T^{2} \)
67 \( 1 + 5.57e4T + 1.35e9T^{2} \)
71 \( 1 + 7.28e4T + 1.80e9T^{2} \)
73 \( 1 - 2.79e4T + 2.07e9T^{2} \)
79 \( 1 + 7.32e4T + 3.07e9T^{2} \)
83 \( 1 + 4.37e4T + 3.93e9T^{2} \)
89 \( 1 - 2.13e4T + 5.58e9T^{2} \)
97 \( 1 - 1.49e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.490634338869602205826863808350, −8.412677641887635519777635170288, −7.28026884126584690812533144335, −6.11910896389031392559837134813, −5.08864236443121059893976363650, −4.30201567289716382379123256592, −3.54190484456476123604715881164, −2.54429647260903251036557023495, −1.23505271473526665760611129401, 0, 1.23505271473526665760611129401, 2.54429647260903251036557023495, 3.54190484456476123604715881164, 4.30201567289716382379123256592, 5.08864236443121059893976363650, 6.11910896389031392559837134813, 7.28026884126584690812533144335, 8.412677641887635519777635170288, 8.490634338869602205826863808350

Graph of the $Z$-function along the critical line