Properties

Label 2-1045-1.1-c5-0-114
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.05·2-s − 6.05·3-s − 30.8·4-s − 25·5-s − 6.41·6-s − 213.·7-s − 66.6·8-s − 206.·9-s − 26.4·10-s + 121·11-s + 186.·12-s − 639.·13-s − 226.·14-s + 151.·15-s + 917.·16-s − 1.79e3·17-s − 218.·18-s + 361·19-s + 771.·20-s + 1.29e3·21-s + 128.·22-s + 4.05e3·23-s + 403.·24-s + 625·25-s − 677.·26-s + 2.71e3·27-s + 6.60e3·28-s + ⋯
L(s)  = 1  + 0.187·2-s − 0.388·3-s − 0.964·4-s − 0.447·5-s − 0.0727·6-s − 1.64·7-s − 0.368·8-s − 0.849·9-s − 0.0837·10-s + 0.301·11-s + 0.374·12-s − 1.04·13-s − 0.309·14-s + 0.173·15-s + 0.895·16-s − 1.50·17-s − 0.159·18-s + 0.229·19-s + 0.431·20-s + 0.640·21-s + 0.0564·22-s + 1.59·23-s + 0.142·24-s + 0.200·25-s − 0.196·26-s + 0.717·27-s + 1.59·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 1.05T + 32T^{2} \)
3 \( 1 + 6.05T + 243T^{2} \)
7 \( 1 + 213.T + 1.68e4T^{2} \)
13 \( 1 + 639.T + 3.71e5T^{2} \)
17 \( 1 + 1.79e3T + 1.41e6T^{2} \)
23 \( 1 - 4.05e3T + 6.43e6T^{2} \)
29 \( 1 - 6.09e3T + 2.05e7T^{2} \)
31 \( 1 - 5.26e3T + 2.86e7T^{2} \)
37 \( 1 - 2.89e3T + 6.93e7T^{2} \)
41 \( 1 + 1.56e4T + 1.15e8T^{2} \)
43 \( 1 + 5.76e3T + 1.47e8T^{2} \)
47 \( 1 - 903.T + 2.29e8T^{2} \)
53 \( 1 + 1.56e4T + 4.18e8T^{2} \)
59 \( 1 + 3.16e4T + 7.14e8T^{2} \)
61 \( 1 + 4.64e4T + 8.44e8T^{2} \)
67 \( 1 - 1.03e4T + 1.35e9T^{2} \)
71 \( 1 - 6.80e4T + 1.80e9T^{2} \)
73 \( 1 - 5.57e4T + 2.07e9T^{2} \)
79 \( 1 - 3.60e4T + 3.07e9T^{2} \)
83 \( 1 - 6.22e4T + 3.93e9T^{2} \)
89 \( 1 + 2.09e4T + 5.58e9T^{2} \)
97 \( 1 - 1.26e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.975098711776449058583103993493, −8.090395631440034391195025993465, −6.73232056896720464144665097746, −6.40985701715479038643143797742, −5.12920185549865673889785517962, −4.55256650525421263208166897450, −3.33264547237351384496161505332, −2.76051041168687322944479125711, −0.67977732182244877222240276047, 0, 0.67977732182244877222240276047, 2.76051041168687322944479125711, 3.33264547237351384496161505332, 4.55256650525421263208166897450, 5.12920185549865673889785517962, 6.40985701715479038643143797742, 6.73232056896720464144665097746, 8.090395631440034391195025993465, 8.975098711776449058583103993493

Graph of the $Z$-function along the critical line