Properties

Label 2-1045-1.1-c5-0-165
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.259·2-s + 8.53·3-s − 31.9·4-s − 25·5-s − 2.21·6-s − 211.·7-s + 16.5·8-s − 170.·9-s + 6.47·10-s + 121·11-s − 272.·12-s + 462.·13-s + 54.9·14-s − 213.·15-s + 1.01e3·16-s + 991.·17-s + 44.0·18-s + 361·19-s + 798.·20-s − 1.80e3·21-s − 31.3·22-s − 1.76e3·23-s + 141.·24-s + 625·25-s − 119.·26-s − 3.52e3·27-s + 6.76e3·28-s + ⋯
L(s)  = 1  − 0.0457·2-s + 0.547·3-s − 0.997·4-s − 0.447·5-s − 0.0250·6-s − 1.63·7-s + 0.0914·8-s − 0.700·9-s + 0.0204·10-s + 0.301·11-s − 0.546·12-s + 0.759·13-s + 0.0748·14-s − 0.244·15-s + 0.993·16-s + 0.831·17-s + 0.0320·18-s + 0.229·19-s + 0.446·20-s − 0.895·21-s − 0.0138·22-s − 0.695·23-s + 0.0501·24-s + 0.200·25-s − 0.0347·26-s − 0.931·27-s + 1.63·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 0.259T + 32T^{2} \)
3 \( 1 - 8.53T + 243T^{2} \)
7 \( 1 + 211.T + 1.68e4T^{2} \)
13 \( 1 - 462.T + 3.71e5T^{2} \)
17 \( 1 - 991.T + 1.41e6T^{2} \)
23 \( 1 + 1.76e3T + 6.43e6T^{2} \)
29 \( 1 + 6.28e3T + 2.05e7T^{2} \)
31 \( 1 - 4.71e3T + 2.86e7T^{2} \)
37 \( 1 + 3.73e3T + 6.93e7T^{2} \)
41 \( 1 - 3.84e3T + 1.15e8T^{2} \)
43 \( 1 - 1.72e4T + 1.47e8T^{2} \)
47 \( 1 - 7.53e3T + 2.29e8T^{2} \)
53 \( 1 - 1.72e4T + 4.18e8T^{2} \)
59 \( 1 - 2.24e3T + 7.14e8T^{2} \)
61 \( 1 - 5.20e4T + 8.44e8T^{2} \)
67 \( 1 - 2.67e4T + 1.35e9T^{2} \)
71 \( 1 - 1.99e4T + 1.80e9T^{2} \)
73 \( 1 + 2.16e4T + 2.07e9T^{2} \)
79 \( 1 - 4.48e4T + 3.07e9T^{2} \)
83 \( 1 + 3.78e4T + 3.93e9T^{2} \)
89 \( 1 + 9.69e4T + 5.58e9T^{2} \)
97 \( 1 + 5.32e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.827027238500536228777576507089, −8.160271858335057092738057237501, −7.24099499825211691183915505898, −6.08001363431949317877549198424, −5.48672493744815767609734339021, −3.88714318735535994827930391897, −3.65712536748687170892462863369, −2.64161594539060370404799014516, −0.909449271463736154565293003626, 0, 0.909449271463736154565293003626, 2.64161594539060370404799014516, 3.65712536748687170892462863369, 3.88714318735535994827930391897, 5.48672493744815767609734339021, 6.08001363431949317877549198424, 7.24099499825211691183915505898, 8.160271858335057092738057237501, 8.827027238500536228777576507089

Graph of the $Z$-function along the critical line