Properties

Label 2-1045-1.1-c5-0-96
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.635·2-s − 27.7·3-s − 31.5·4-s − 25·5-s + 17.6·6-s + 19.6·7-s + 40.4·8-s + 529.·9-s + 15.8·10-s + 121·11-s + 878.·12-s − 886.·13-s − 12.4·14-s + 694.·15-s + 985.·16-s − 2.21e3·17-s − 336.·18-s + 361·19-s + 789.·20-s − 545.·21-s − 76.8·22-s − 1.26e3·23-s − 1.12e3·24-s + 625·25-s + 563.·26-s − 7.95e3·27-s − 620.·28-s + ⋯
L(s)  = 1  − 0.112·2-s − 1.78·3-s − 0.987·4-s − 0.447·5-s + 0.200·6-s + 0.151·7-s + 0.223·8-s + 2.17·9-s + 0.0502·10-s + 0.301·11-s + 1.76·12-s − 1.45·13-s − 0.0170·14-s + 0.797·15-s + 0.962·16-s − 1.86·17-s − 0.244·18-s + 0.229·19-s + 0.441·20-s − 0.269·21-s − 0.0338·22-s − 0.497·23-s − 0.398·24-s + 0.200·25-s + 0.163·26-s − 2.10·27-s − 0.149·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 0.635T + 32T^{2} \)
3 \( 1 + 27.7T + 243T^{2} \)
7 \( 1 - 19.6T + 1.68e4T^{2} \)
13 \( 1 + 886.T + 3.71e5T^{2} \)
17 \( 1 + 2.21e3T + 1.41e6T^{2} \)
23 \( 1 + 1.26e3T + 6.43e6T^{2} \)
29 \( 1 + 8.24e3T + 2.05e7T^{2} \)
31 \( 1 + 6.37e3T + 2.86e7T^{2} \)
37 \( 1 - 8.49e3T + 6.93e7T^{2} \)
41 \( 1 + 639.T + 1.15e8T^{2} \)
43 \( 1 - 2.01e4T + 1.47e8T^{2} \)
47 \( 1 - 1.96e4T + 2.29e8T^{2} \)
53 \( 1 - 1.93e4T + 4.18e8T^{2} \)
59 \( 1 + 2.33e4T + 7.14e8T^{2} \)
61 \( 1 - 318.T + 8.44e8T^{2} \)
67 \( 1 - 2.36e4T + 1.35e9T^{2} \)
71 \( 1 + 1.06e4T + 1.80e9T^{2} \)
73 \( 1 - 1.44e4T + 2.07e9T^{2} \)
79 \( 1 - 7.32e4T + 3.07e9T^{2} \)
83 \( 1 + 6.03e4T + 3.93e9T^{2} \)
89 \( 1 - 3.16e4T + 5.58e9T^{2} \)
97 \( 1 - 8.69e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.069010246020895825733291303188, −7.66770450679970548739761403633, −7.13233823779565166897386680857, −6.03455587481448008090956717012, −5.27530886743148102824430972685, −4.51433173062679574737116522822, −3.97706091453534556119273728626, −2.03034890631683916546492372227, −0.63616452119864504507536498089, 0, 0.63616452119864504507536498089, 2.03034890631683916546492372227, 3.97706091453534556119273728626, 4.51433173062679574737116522822, 5.27530886743148102824430972685, 6.03455587481448008090956717012, 7.13233823779565166897386680857, 7.66770450679970548739761403633, 9.069010246020895825733291303188

Graph of the $Z$-function along the critical line