Properties

Label 2-1045-1.1-c5-0-208
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.41·2-s − 5.73·3-s − 20.3·4-s − 25·5-s + 19.6·6-s + 236.·7-s + 178.·8-s − 210.·9-s + 85.4·10-s + 121·11-s + 116.·12-s + 1.09e3·13-s − 806.·14-s + 143.·15-s + 39.0·16-s − 1.68e3·17-s + 718.·18-s + 361·19-s + 507.·20-s − 1.35e3·21-s − 413.·22-s + 572.·23-s − 1.02e3·24-s + 625·25-s − 3.75e3·26-s + 2.59e3·27-s − 4.79e3·28-s + ⋯
L(s)  = 1  − 0.604·2-s − 0.367·3-s − 0.634·4-s − 0.447·5-s + 0.222·6-s + 1.82·7-s + 0.987·8-s − 0.864·9-s + 0.270·10-s + 0.301·11-s + 0.233·12-s + 1.80·13-s − 1.10·14-s + 0.164·15-s + 0.0381·16-s − 1.41·17-s + 0.522·18-s + 0.229·19-s + 0.283·20-s − 0.670·21-s − 0.182·22-s + 0.225·23-s − 0.363·24-s + 0.200·25-s − 1.08·26-s + 0.686·27-s − 1.15·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 3.41T + 32T^{2} \)
3 \( 1 + 5.73T + 243T^{2} \)
7 \( 1 - 236.T + 1.68e4T^{2} \)
13 \( 1 - 1.09e3T + 3.71e5T^{2} \)
17 \( 1 + 1.68e3T + 1.41e6T^{2} \)
23 \( 1 - 572.T + 6.43e6T^{2} \)
29 \( 1 + 7.15e3T + 2.05e7T^{2} \)
31 \( 1 + 5.93e3T + 2.86e7T^{2} \)
37 \( 1 + 517.T + 6.93e7T^{2} \)
41 \( 1 - 1.33e4T + 1.15e8T^{2} \)
43 \( 1 - 236.T + 1.47e8T^{2} \)
47 \( 1 + 6.22e3T + 2.29e8T^{2} \)
53 \( 1 + 1.03e4T + 4.18e8T^{2} \)
59 \( 1 + 2.62e4T + 7.14e8T^{2} \)
61 \( 1 + 4.76e4T + 8.44e8T^{2} \)
67 \( 1 - 2.16e3T + 1.35e9T^{2} \)
71 \( 1 - 3.97e4T + 1.80e9T^{2} \)
73 \( 1 - 4.33e4T + 2.07e9T^{2} \)
79 \( 1 + 1.41e3T + 3.07e9T^{2} \)
83 \( 1 + 4.03e4T + 3.93e9T^{2} \)
89 \( 1 - 5.01e4T + 5.58e9T^{2} \)
97 \( 1 + 1.05e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.831192294164573816837033512921, −8.107676467649452671609169575283, −7.46300143823600533968334886201, −6.13838383599708508715840151103, −5.24843296103629591791257541601, −4.44703609436801599423266567387, −3.65252098441052138718653073481, −1.90043955935239697554837739339, −1.08387824538024811758588747025, 0, 1.08387824538024811758588747025, 1.90043955935239697554837739339, 3.65252098441052138718653073481, 4.44703609436801599423266567387, 5.24843296103629591791257541601, 6.13838383599708508715840151103, 7.46300143823600533968334886201, 8.107676467649452671609169575283, 8.831192294164573816837033512921

Graph of the $Z$-function along the critical line