Properties

Label 2-1045-1.1-c3-0-3
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $61.6569$
Root an. cond. $7.85219$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.197·2-s − 0.963·3-s − 7.96·4-s − 5·5-s − 0.190·6-s + 0.480·7-s − 3.14·8-s − 26.0·9-s − 0.986·10-s + 11·11-s + 7.67·12-s − 92.4·13-s + 0.0947·14-s + 4.81·15-s + 63.0·16-s − 100.·17-s − 5.14·18-s + 19·19-s + 39.8·20-s − 0.462·21-s + 2.17·22-s − 183.·23-s + 3.03·24-s + 25·25-s − 18.2·26-s + 51.1·27-s − 3.82·28-s + ⋯
L(s)  = 1  + 0.0697·2-s − 0.185·3-s − 0.995·4-s − 0.447·5-s − 0.0129·6-s + 0.0259·7-s − 0.139·8-s − 0.965·9-s − 0.0312·10-s + 0.301·11-s + 0.184·12-s − 1.97·13-s + 0.00180·14-s + 0.0829·15-s + 0.985·16-s − 1.42·17-s − 0.0673·18-s + 0.229·19-s + 0.445·20-s − 0.00480·21-s + 0.0210·22-s − 1.66·23-s + 0.0258·24-s + 0.200·25-s − 0.137·26-s + 0.364·27-s − 0.0257·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(61.6569\)
Root analytic conductor: \(7.85219\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1683915387\)
\(L(\frac12)\) \(\approx\) \(0.1683915387\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 5T \)
11 \( 1 - 11T \)
19 \( 1 - 19T \)
good2 \( 1 - 0.197T + 8T^{2} \)
3 \( 1 + 0.963T + 27T^{2} \)
7 \( 1 - 0.480T + 343T^{2} \)
13 \( 1 + 92.4T + 2.19e3T^{2} \)
17 \( 1 + 100.T + 4.91e3T^{2} \)
23 \( 1 + 183.T + 1.21e4T^{2} \)
29 \( 1 + 122.T + 2.43e4T^{2} \)
31 \( 1 - 132.T + 2.97e4T^{2} \)
37 \( 1 + 224.T + 5.06e4T^{2} \)
41 \( 1 - 371.T + 6.89e4T^{2} \)
43 \( 1 + 499.T + 7.95e4T^{2} \)
47 \( 1 + 565.T + 1.03e5T^{2} \)
53 \( 1 - 296.T + 1.48e5T^{2} \)
59 \( 1 - 485.T + 2.05e5T^{2} \)
61 \( 1 + 328.T + 2.26e5T^{2} \)
67 \( 1 + 11.5T + 3.00e5T^{2} \)
71 \( 1 - 52.6T + 3.57e5T^{2} \)
73 \( 1 + 123.T + 3.89e5T^{2} \)
79 \( 1 - 231.T + 4.93e5T^{2} \)
83 \( 1 + 477.T + 5.71e5T^{2} \)
89 \( 1 + 1.08e3T + 7.04e5T^{2} \)
97 \( 1 + 226.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.591588313620249424061860995945, −8.648030683687716680430296889380, −8.060581331581944813548485003047, −7.07023523927955769720626908185, −6.02326983188027163728408721349, −5.01570708594347917298621219675, −4.44641291749851652986600754498, −3.34254510385287372352633505091, −2.13801574329732610143426048779, −0.20454475522419233132252162827, 0.20454475522419233132252162827, 2.13801574329732610143426048779, 3.34254510385287372352633505091, 4.44641291749851652986600754498, 5.01570708594347917298621219675, 6.02326983188027163728408721349, 7.07023523927955769720626908185, 8.060581331581944813548485003047, 8.648030683687716680430296889380, 9.591588313620249424061860995945

Graph of the $Z$-function along the critical line