Properties

 Degree 2 Conductor $2^{3} \cdot 13$ Sign $1$ Motivic weight 0 Primitive yes Self-dual yes Analytic rank 0

Learn more about

Dirichlet series

 L(s)  = 1 − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s − 10-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 20-s − 21-s + 24-s + 26-s + 27-s + 28-s + 30-s − 2·31-s − 32-s + 34-s + 35-s + 37-s + 39-s + ⋯
 L(s)  = 1 − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s − 10-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 20-s − 21-s + 24-s + 26-s + 27-s + 28-s + 30-s − 2·31-s − 32-s + 34-s + 35-s + 37-s + 39-s + ⋯

Functional equation

\begin{aligned} \Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\n
\begin{aligned} \Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\n

Invariants

 $$d$$ = $$2$$ $$N$$ = $$104$$    =    $$2^{3} \cdot 13$$ $$\varepsilon$$ = $1$ motivic weight = $$0$$ character : $\chi_{104} (51, \cdot )$ primitive : yes self-dual : yes analytic rank = 0 Selberg data = $(2,\ 104,\ (\ :0),\ 1)$ $L(\frac{1}{2})$ $\approx$ $0.3506445621$ $L(\frac12)$ $\approx$ $0.3506445621$ $L(1)$ not available $L(1)$ not available

Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$ where, for $p \notin \{2,\;13\}$, $$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;13\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + T$$
13 $$1 + T$$
good3 $$1 + T + T^{2}$$
5 $$1 - T + T^{2}$$
7 $$1 - T + T^{2}$$
11 $$( 1 - T )( 1 + T )$$
17 $$1 + T + T^{2}$$
19 $$( 1 - T )( 1 + T )$$
23 $$( 1 - T )( 1 + T )$$
29 $$( 1 - T )( 1 + T )$$
31 $$( 1 + T )^{2}$$
37 $$1 - T + T^{2}$$
41 $$( 1 - T )( 1 + T )$$
43 $$1 + T + T^{2}$$
47 $$1 - T + T^{2}$$
53 $$( 1 - T )( 1 + T )$$
59 $$( 1 - T )( 1 + T )$$
61 $$( 1 - T )( 1 + T )$$
67 $$( 1 - T )( 1 + T )$$
71 $$1 - T + T^{2}$$
73 $$( 1 - T )( 1 + T )$$
79 $$( 1 - T )( 1 + T )$$
83 $$( 1 - T )( 1 + T )$$
89 $$( 1 - T )( 1 + T )$$
97 $$( 1 - T )( 1 + T )$$
show more
show less
\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}

Imaginary part of the first few zeros on the critical line

−14.21903403686422288216786219204, −12.69759417877772506687250298073, −11.53875891143008359430010850022, −10.91362787156601425843494571816, −9.849520919914033047471247341525, −8.768893274904782034971084298372, −7.37748796465981917417358202634, −6.13973319085271586429221786246, −5.11000336544565001207901214497, −2.09431808749519266596519118860, 2.09431808749519266596519118860, 5.11000336544565001207901214497, 6.13973319085271586429221786246, 7.37748796465981917417358202634, 8.768893274904782034971084298372, 9.849520919914033047471247341525, 10.91362787156601425843494571816, 11.53875891143008359430010850022, 12.69759417877772506687250298073, 14.21903403686422288216786219204