# Properties

 Degree $2$ Conductor $1024$ Sign $1$ Motivic weight $3$ Primitive yes Self-dual yes Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 8.43·3-s + 12.2·5-s + 1.63·7-s + 44.1·9-s − 25.7·11-s − 13.2·13-s + 103.·15-s − 53.6·17-s + 100.·19-s + 13.8·21-s + 25.1·23-s + 25.6·25-s + 144.·27-s + 256.·29-s + 132.·31-s − 217.·33-s + 20.1·35-s + 247.·37-s − 111.·39-s + 198.·41-s + 404.·43-s + 542.·45-s − 78.3·47-s − 340.·49-s − 452.·51-s + 743.·53-s − 315.·55-s + ⋯
 L(s)  = 1 + 1.62·3-s + 1.09·5-s + 0.0885·7-s + 1.63·9-s − 0.705·11-s − 0.282·13-s + 1.78·15-s − 0.764·17-s + 1.21·19-s + 0.143·21-s + 0.227·23-s + 0.205·25-s + 1.03·27-s + 1.63·29-s + 0.768·31-s − 1.14·33-s + 0.0971·35-s + 1.09·37-s − 0.457·39-s + 0.756·41-s + 1.43·43-s + 1.79·45-s − 0.243·47-s − 0.992·49-s − 1.24·51-s + 1.92·53-s − 0.774·55-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1024$$    =    $$2^{10}$$ Sign: $1$ Motivic weight: $$3$$ Character: $\chi_{1024} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 1024,\ (\ :3/2),\ 1)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$4.946763272$$ $$L(\frac12)$$ $$\approx$$ $$4.946763272$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
good3 $$1 - 8.43T + 27T^{2}$$
5 $$1 - 12.2T + 125T^{2}$$
7 $$1 - 1.63T + 343T^{2}$$
11 $$1 + 25.7T + 1.33e3T^{2}$$
13 $$1 + 13.2T + 2.19e3T^{2}$$
17 $$1 + 53.6T + 4.91e3T^{2}$$
19 $$1 - 100.T + 6.85e3T^{2}$$
23 $$1 - 25.1T + 1.21e4T^{2}$$
29 $$1 - 256.T + 2.43e4T^{2}$$
31 $$1 - 132.T + 2.97e4T^{2}$$
37 $$1 - 247.T + 5.06e4T^{2}$$
41 $$1 - 198.T + 6.89e4T^{2}$$
43 $$1 - 404.T + 7.95e4T^{2}$$
47 $$1 + 78.3T + 1.03e5T^{2}$$
53 $$1 - 743.T + 1.48e5T^{2}$$
59 $$1 - 65.8T + 2.05e5T^{2}$$
61 $$1 + 273.T + 2.26e5T^{2}$$
67 $$1 + 399.T + 3.00e5T^{2}$$
71 $$1 - 727.T + 3.57e5T^{2}$$
73 $$1 - 106.T + 3.89e5T^{2}$$
79 $$1 - 58.9T + 4.93e5T^{2}$$
83 $$1 + 580.T + 5.71e5T^{2}$$
89 $$1 + 768.T + 7.04e5T^{2}$$
97 $$1 + 809.T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.578360636327438504262297322471, −8.781597449875472427946833032009, −8.022329008446680396133092635051, −7.27909689024147577978778703305, −6.23283557968567083316537129701, −5.14982600369590871955751145236, −4.14116171119984349018329424448, −2.75412650814173250352747269890, −2.48697389390343085973778299815, −1.18487164950767454534058824419, 1.18487164950767454534058824419, 2.48697389390343085973778299815, 2.75412650814173250352747269890, 4.14116171119984349018329424448, 5.14982600369590871955751145236, 6.23283557968567083316537129701, 7.27909689024147577978778703305, 8.022329008446680396133092635051, 8.781597449875472427946833032009, 9.578360636327438504262297322471