Properties

Label 4-2e20-1.1-c1e2-0-13
Degree $4$
Conductor $1048576$
Sign $1$
Analytic cond. $66.8581$
Root an. cond. $2.85948$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 8·9-s + 4·11-s − 12·17-s − 12·19-s − 12·27-s − 16·33-s − 12·43-s + 14·49-s + 48·51-s + 48·57-s − 20·59-s + 12·67-s + 23·81-s + 4·83-s − 20·97-s + 32·99-s − 28·107-s − 36·113-s + 8·121-s + 127-s + 48·129-s + 131-s + 137-s + 139-s − 56·147-s + 149-s + ⋯
L(s)  = 1  − 2.30·3-s + 8/3·9-s + 1.20·11-s − 2.91·17-s − 2.75·19-s − 2.30·27-s − 2.78·33-s − 1.82·43-s + 2·49-s + 6.72·51-s + 6.35·57-s − 2.60·59-s + 1.46·67-s + 23/9·81-s + 0.439·83-s − 2.03·97-s + 3.21·99-s − 2.70·107-s − 3.38·113-s + 8/11·121-s + 0.0887·127-s + 4.22·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.61·147-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1048576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1048576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1048576\)    =    \(2^{20}\)
Sign: $1$
Analytic conductor: \(66.8581\)
Root analytic conductor: \(2.85948\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1048576,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + p^{2} T^{4} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2^2$ \( 1 + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.864817774256780506140088140240, −9.203443160706563821878988179406, −9.079333142672526382928142319300, −8.537887679111114423380317944395, −8.200735361291123137510445775522, −7.42650399309919736148654323524, −6.75172124706229530752788295853, −6.61326704609483034513883321525, −6.27229838899994366656850162432, −6.26531678317718414873911810734, −5.25944459715080340930668615307, −5.17226344302626082840278043131, −4.33378027211651351784423619181, −4.23672589684993170572700363073, −3.87492803420020889319438857115, −2.58963681729570994937645386150, −2.04790788539260179132268842795, −1.36549827710483330589193810009, 0, 0, 1.36549827710483330589193810009, 2.04790788539260179132268842795, 2.58963681729570994937645386150, 3.87492803420020889319438857115, 4.23672589684993170572700363073, 4.33378027211651351784423619181, 5.17226344302626082840278043131, 5.25944459715080340930668615307, 6.26531678317718414873911810734, 6.27229838899994366656850162432, 6.61326704609483034513883321525, 6.75172124706229530752788295853, 7.42650399309919736148654323524, 8.200735361291123137510445775522, 8.537887679111114423380317944395, 9.079333142672526382928142319300, 9.203443160706563821878988179406, 9.864817774256780506140088140240

Graph of the $Z$-function along the critical line