Properties

Label 8-1014e4-1.1-c1e4-0-0
Degree $8$
Conductor $1.057\times 10^{12}$
Sign $1$
Analytic cond. $4297.93$
Root an. cond. $2.84549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 4-s + 4·6-s − 6·7-s − 2·8-s + 9-s − 6·11-s + 2·12-s − 12·14-s − 4·16-s + 2·18-s − 6·19-s − 12·21-s − 12·22-s + 6·23-s − 4·24-s − 14·25-s − 2·27-s − 6·28-s + 6·29-s + 24·31-s − 2·32-s − 12·33-s + 36-s − 6·37-s − 12·38-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 1/2·4-s + 1.63·6-s − 2.26·7-s − 0.707·8-s + 1/3·9-s − 1.80·11-s + 0.577·12-s − 3.20·14-s − 16-s + 0.471·18-s − 1.37·19-s − 2.61·21-s − 2.55·22-s + 1.25·23-s − 0.816·24-s − 2.79·25-s − 0.384·27-s − 1.13·28-s + 1.11·29-s + 4.31·31-s − 0.353·32-s − 2.08·33-s + 1/6·36-s − 0.986·37-s − 1.94·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(4297.93\)
Root analytic conductor: \(2.84549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3489397071\)
\(L(\frac12)\) \(\approx\) \(0.3489397071\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - T + T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13 \( 1 \)
good5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 6 T + 16 T^{2} + 36 T^{3} + 99 T^{4} + 36 p T^{5} + 16 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 6 T + 8 T^{2} + 36 T^{3} + 267 T^{4} + 36 p T^{5} + 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^3$ \( 1 - 7 T^{2} - 240 T^{4} - 7 p^{2} T^{6} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 6 T - 8 T^{2} + 36 T^{3} + 891 T^{4} + 36 p T^{5} - 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 6 T + 8 T^{2} + 108 T^{3} - 573 T^{4} + 108 p T^{5} + 8 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 3 T - 20 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 12 T + 86 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 3 T - 28 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T - 43 T^{2} - 18 T^{3} + 3084 T^{4} - 18 p T^{5} - 43 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 2 T - 56 T^{2} - 52 T^{3} + 1579 T^{4} - 52 p T^{5} - 56 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 6 T + 100 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
59$C_2^3$ \( 1 + 74 T^{2} + 1995 T^{4} + 74 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 20 T + 205 T^{2} + 1460 T^{3} + 9904 T^{4} + 1460 p T^{5} + 205 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 18 T + 112 T^{2} + 1404 T^{3} + 18747 T^{4} + 1404 p T^{5} + 112 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 6 T - 88 T^{2} - 108 T^{3} + 7779 T^{4} - 108 p T^{5} - 88 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 6 T + 100 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 12 T - 58 T^{2} + 288 T^{3} + 20067 T^{4} + 288 p T^{5} - 58 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 + 6 T - 61 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03740589894413140481202814916, −6.77093812575731718446507195545, −6.69147128074287386935343135040, −6.46063652865219640565881988374, −6.01049729827333751081862113587, −5.99590240773074487576059578271, −5.91227576191916703090274079315, −5.56907895733564438168329298476, −5.28060887590775151590693126117, −5.07542507110338206978610587255, −4.58311455789743975125895536488, −4.47509796032712058188361522757, −4.37230331736946274036767094605, −4.12825681442363055605613855590, −3.89242170164298322800130144199, −3.20852158727551795985948368379, −3.19013151598015824790781444438, −3.05955010290036586529054931564, −2.87091240016748578150206092308, −2.82146694988169282767981018446, −2.28671665363405871728820345908, −1.94108609396576904762495473164, −1.62411912432382812906371963691, −0.77903028533538935146245994635, −0.11122698193967864768077445363, 0.11122698193967864768077445363, 0.77903028533538935146245994635, 1.62411912432382812906371963691, 1.94108609396576904762495473164, 2.28671665363405871728820345908, 2.82146694988169282767981018446, 2.87091240016748578150206092308, 3.05955010290036586529054931564, 3.19013151598015824790781444438, 3.20852158727551795985948368379, 3.89242170164298322800130144199, 4.12825681442363055605613855590, 4.37230331736946274036767094605, 4.47509796032712058188361522757, 4.58311455789743975125895536488, 5.07542507110338206978610587255, 5.28060887590775151590693126117, 5.56907895733564438168329298476, 5.91227576191916703090274079315, 5.99590240773074487576059578271, 6.01049729827333751081862113587, 6.46063652865219640565881988374, 6.69147128074287386935343135040, 6.77093812575731718446507195545, 7.03740589894413140481202814916

Graph of the $Z$-function along the critical line