Properties

Degree 2
Conductor $ 2^{4} \cdot 3^{2} \cdot 7 $
Sign $0.697 + 0.716i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.385 + 1.68i)3-s + (1.15 − 2.00i)5-s + (−0.5 − 0.866i)7-s + (−2.70 − 1.30i)9-s + (0.655 + 1.13i)11-s + (1.93 − 3.34i)13-s + (2.93 + 2.72i)15-s − 0.326·17-s − 3.08·19-s + (1.65 − 0.510i)21-s + (1.81 − 3.15i)23-s + (−0.169 − 0.293i)25-s + (3.24 − 4.05i)27-s + (−4.75 − 8.22i)29-s + (3.24 − 5.62i)31-s + ⋯
L(s)  = 1  + (−0.222 + 0.974i)3-s + (0.516 − 0.894i)5-s + (−0.188 − 0.327i)7-s + (−0.900 − 0.434i)9-s + (0.197 + 0.342i)11-s + (0.536 − 0.928i)13-s + (0.757 + 0.703i)15-s − 0.0792·17-s − 0.707·19-s + (0.361 − 0.111i)21-s + (0.379 − 0.656i)23-s + (−0.0338 − 0.0586i)25-s + (0.624 − 0.781i)27-s + (−0.882 − 1.52i)29-s + (0.583 − 1.01i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
\( \varepsilon \)  =  $0.697 + 0.716i$
motivic weight  =  \(1\)
character  :  $\chi_{1008} (337, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 1008,\ (\ :1/2),\ 0.697 + 0.716i)\)
\(L(1)\)  \(\approx\)  \(1.379795774\)
\(L(\frac12)\)  \(\approx\)  \(1.379795774\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.385 - 1.68i)T \)
7 \( 1 + (0.5 + 0.866i)T \)
good5 \( 1 + (-1.15 + 2.00i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-0.655 - 1.13i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-1.93 + 3.34i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + 0.326T + 17T^{2} \)
19 \( 1 + 3.08T + 19T^{2} \)
23 \( 1 + (-1.81 + 3.15i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (4.75 + 8.22i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-3.24 + 5.62i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 2.31T + 37T^{2} \)
41 \( 1 + (-4.74 + 8.22i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-0.0493 - 0.0855i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-0.108 - 0.187i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 - 13.7T + 53T^{2} \)
59 \( 1 + (1.22 - 2.12i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-7.68 - 13.3i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (2.93 - 5.08i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 1.77T + 71T^{2} \)
73 \( 1 + 5.99T + 73T^{2} \)
79 \( 1 + (7.29 + 12.6i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.04 + 5.26i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 5.52T + 89T^{2} \)
97 \( 1 + (-2.99 - 5.18i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.984412851887952790588327848854, −9.008476050614108434689920798104, −8.569445872025329596448125435209, −7.39959085492892927618080265475, −6.07542337613324953622643041757, −5.57513502041377734039527921512, −4.50209264408797911020956276671, −3.85083996976866560884685640932, −2.44180099203689080766932613397, −0.67698163222371326710688079041, 1.47307077394530054384548780923, 2.52434041632518813850684728423, 3.54494205123792899073369566456, 5.09791450443251215935423290310, 6.10862301605508995306014677555, 6.63511619856218424451507094305, 7.28132403833172272479586015128, 8.487634756155246330866684579669, 9.062055853826327389299100822160, 10.18898225517629911103656483987

Graph of the $Z$-function along the critical line