Properties

Degree $2$
Conductor $1008$
Sign $-0.635 - 0.771i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.41i)3-s + (−1.72 − 2.98i)5-s + (−0.5 + 0.866i)7-s + (−1.00 − 2.82i)9-s + (1 − 1.73i)11-s + (2.44 + 4.24i)13-s + (5.94 + 0.548i)15-s + 2·17-s − 7.44·19-s + (−0.724 − 1.57i)21-s + (−0.5 − 0.866i)23-s + (−3.44 + 5.97i)25-s + (5.00 + 1.41i)27-s + (−1.44 + 2.51i)29-s + (3 + 5.19i)31-s + ⋯
L(s)  = 1  + (−0.577 + 0.816i)3-s + (−0.771 − 1.33i)5-s + (−0.188 + 0.327i)7-s + (−0.333 − 0.942i)9-s + (0.301 − 0.522i)11-s + (0.679 + 1.17i)13-s + (1.53 + 0.141i)15-s + 0.485·17-s − 1.70·19-s + (−0.158 − 0.343i)21-s + (−0.104 − 0.180i)23-s + (−0.689 + 1.19i)25-s + (0.962 + 0.272i)27-s + (−0.269 + 0.466i)29-s + (0.538 + 0.933i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.635 - 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.635 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.635 - 0.771i$
Motivic weight: \(1\)
Character: $\chi_{1008} (673, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ -0.635 - 0.771i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4837140750\)
\(L(\frac12)\) \(\approx\) \(0.4837140750\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1 - 1.41i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
good5 \( 1 + (1.72 + 2.98i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-2.44 - 4.24i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 7.44T + 19T^{2} \)
23 \( 1 + (0.5 + 0.866i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.44 - 2.51i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-3 - 5.19i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 7.79T + 37T^{2} \)
41 \( 1 + (-4.89 - 8.48i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (1.44 - 2.51i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (4.89 - 8.48i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 1.10T + 53T^{2} \)
59 \( 1 + (1 + 1.73i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (5.72 - 9.91i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.55 + 2.68i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 9.89T + 71T^{2} \)
73 \( 1 - 2.89T + 73T^{2} \)
79 \( 1 + (-3.94 + 6.84i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-1 + 1.73i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 7.10T + 89T^{2} \)
97 \( 1 + (-3.44 + 5.97i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31946807797550537313945752154, −9.116280954548618852841105159283, −8.878706649797077508464777449107, −8.091103648367152161693523441980, −6.60946371017500205569420558912, −5.95048934908979591808701958876, −4.78373234621885571599501331940, −4.31063365361766242026333753990, −3.35592605166668411807361210881, −1.32586673763996818821308854854, 0.25481528615209441411258965761, 2.06120870414923692069032507984, 3.25859243012756859283470059073, 4.19795613890689535319049717561, 5.62641154372072107758146933498, 6.44139223218738944001638154222, 7.08220885182221980249453396425, 7.80046011432453914023363357025, 8.498780186543142777612709893290, 10.05611126638474390580863235390

Graph of the $Z$-function along the critical line