Properties

Label 8-1008e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.032\times 10^{12}$
Sign $1$
Analytic cond. $4197.11$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 4·25-s − 32·37-s + 8·43-s − 2·49-s − 32·67-s + 16·79-s + 16·109-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s + 16·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 1.51·7-s + 4/5·25-s − 5.26·37-s + 1.21·43-s − 2/7·49-s − 3.90·67-s + 1.80·79-s + 1.53·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4/13·169-s + 0.0760·173-s + 1.20·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4197.11\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.8180684839\)
\(L(\frac12)\) \(\approx\) \(0.8180684839\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 28 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 124 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.27586051529130055199366605375, −7.10842077039591159762704676526, −6.68103600269940484301036404218, −6.40570421645634995482108107871, −6.23999886810543594180989090665, −6.10305942880796060122452535495, −5.71043500669469085099172913757, −5.47631116130051516878113645504, −5.26187614450275704637581972518, −5.01274627049784423938302269229, −4.76376120542697806171471507490, −4.73190106636080514521640132173, −4.54290578387824164368309994845, −3.97907493330040818301301053535, −3.87810241512098645269686149545, −3.32828193221980080036557981408, −3.30281762692379705279491977101, −3.30250079332764097116761737800, −2.52656087614917534912737501383, −2.23099435967430749903964436616, −2.19819323526895105598158560666, −1.51454079073503463902057065716, −1.41552142900784671795552119596, −1.20595817793977360737787846470, −0.19296566215816578712274547067, 0.19296566215816578712274547067, 1.20595817793977360737787846470, 1.41552142900784671795552119596, 1.51454079073503463902057065716, 2.19819323526895105598158560666, 2.23099435967430749903964436616, 2.52656087614917534912737501383, 3.30250079332764097116761737800, 3.30281762692379705279491977101, 3.32828193221980080036557981408, 3.87810241512098645269686149545, 3.97907493330040818301301053535, 4.54290578387824164368309994845, 4.73190106636080514521640132173, 4.76376120542697806171471507490, 5.01274627049784423938302269229, 5.26187614450275704637581972518, 5.47631116130051516878113645504, 5.71043500669469085099172913757, 6.10305942880796060122452535495, 6.23999886810543594180989090665, 6.40570421645634995482108107871, 6.68103600269940484301036404218, 7.10842077039591159762704676526, 7.27586051529130055199366605375

Graph of the $Z$-function along the critical line