Properties

Degree 2
Conductor $ 2^{4} \cdot 3^{2} \cdot 7 $
Sign $0.832 - 0.553i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.35 − 1.93i)5-s + (2.5 + 0.866i)7-s + (−3.35 + 1.93i)11-s + 3.46i·13-s + (2 − 3.46i)19-s + (6.70 + 3.87i)23-s + (5.00 + 8.66i)25-s + 6.70·29-s + (−0.5 − 0.866i)31-s + (−6.70 − 7.74i)35-s + (−2 + 3.46i)37-s + 7.74i·41-s − 6.92i·43-s + (6.70 − 11.6i)47-s + (5.5 + 4.33i)49-s + ⋯
L(s)  = 1  + (−1.50 − 0.866i)5-s + (0.944 + 0.327i)7-s + (−1.01 + 0.583i)11-s + 0.960i·13-s + (0.458 − 0.794i)19-s + (1.39 + 0.807i)23-s + (1.00 + 1.73i)25-s + 1.24·29-s + (−0.0898 − 0.155i)31-s + (−1.13 − 1.30i)35-s + (−0.328 + 0.569i)37-s + 1.20i·41-s − 1.05i·43-s + (0.978 − 1.69i)47-s + (0.785 + 0.618i)49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
\( \varepsilon \)  =  $0.832 - 0.553i$
motivic weight  =  \(1\)
character  :  $\chi_{1008} (271, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 1008,\ (\ :1/2),\ 0.832 - 0.553i)\)
\(L(1)\)  \(\approx\)  \(1.170293580\)
\(L(\frac12)\)  \(\approx\)  \(1.170293580\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-2.5 - 0.866i)T \)
good5 \( 1 + (3.35 + 1.93i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (3.35 - 1.93i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 - 3.46iT - 13T^{2} \)
17 \( 1 + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-6.70 - 3.87i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 6.70T + 29T^{2} \)
31 \( 1 + (0.5 + 0.866i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 7.74iT - 41T^{2} \)
43 \( 1 + 6.92iT - 43T^{2} \)
47 \( 1 + (-6.70 + 11.6i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3.35 - 5.80i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3.35 - 5.80i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-9 - 5.19i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (6 - 3.46i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 7.74iT - 71T^{2} \)
73 \( 1 + (6 - 3.46i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-10.5 - 6.06i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + 6.70T + 83T^{2} \)
89 \( 1 + (6.70 + 3.87i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 5.19iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.04932430371784215239368097236, −8.774488850707344848877975080005, −8.591784782589994908015626606678, −7.47200918790317507316074162516, −7.10227121930539293988648035325, −5.31310557199032734963821914368, −4.81877832650278341383899386361, −4.03226309903881700495659169597, −2.65570274181617204534961235923, −1.10657997650339053144143930908, 0.67496184238300226305476616076, 2.72337014160572371331039918924, 3.48222220852636701031637167404, 4.56399411658811557480021688914, 5.43928110111558380197361965484, 6.71493363026460909838599242864, 7.66667485231763518507641664212, 7.951159317968439430629295449603, 8.745757819282291036192987571804, 10.33641221700332814637509654340

Graph of the $Z$-function along the critical line