Properties

Degree $2$
Conductor $1008$
Sign $0.832 + 0.553i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (3 − 1.73i)5-s + (0.5 − 2.59i)7-s + (3 + 1.73i)11-s + 5.19i·13-s + (6 + 3.46i)17-s + (−3.5 − 6.06i)19-s + (3.5 − 6.06i)25-s + (−2.5 + 4.33i)31-s + (−3 − 8.66i)35-s + (−0.5 − 0.866i)37-s − 10.3i·41-s + 1.73i·43-s + (−3 − 5.19i)47-s + (−6.5 − 2.59i)49-s + 12·55-s + ⋯
L(s)  = 1  + (1.34 − 0.774i)5-s + (0.188 − 0.981i)7-s + (0.904 + 0.522i)11-s + 1.44i·13-s + (1.45 + 0.840i)17-s + (−0.802 − 1.39i)19-s + (0.700 − 1.21i)25-s + (−0.449 + 0.777i)31-s + (−0.507 − 1.46i)35-s + (−0.0821 − 0.142i)37-s − 1.62i·41-s + 0.264i·43-s + (−0.437 − 0.757i)47-s + (−0.928 − 0.371i)49-s + 1.61·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.832 + 0.553i$
Motivic weight: \(1\)
Character: $\chi_{1008} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 0.832 + 0.553i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.209235144\)
\(L(\frac12)\) \(\approx\) \(2.209235144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-0.5 + 2.59i)T \)
good5 \( 1 + (-3 + 1.73i)T + (2.5 - 4.33i)T^{2} \)
11 \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 - 5.19iT - 13T^{2} \)
17 \( 1 + (-6 - 3.46i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.5 + 6.06i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 10.3iT - 41T^{2} \)
43 \( 1 - 1.73iT - 43T^{2} \)
47 \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.5 - 0.866i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 3.46iT - 71T^{2} \)
73 \( 1 + (-7.5 - 4.33i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (13.5 - 7.79i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (6 - 3.46i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + 6.92iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.800331275349243628524798112220, −9.155022842141244979940517030927, −8.476465864121345578363289494351, −7.11363521738947374123338657465, −6.60451195973772045311178607638, −5.53337107360766385145487256840, −4.61482375082979772642949919702, −3.81087117394956968277353124733, −2.02841478795837421035871178007, −1.24848984411413032704653694327, 1.47271968346938712348794827883, 2.67290374323381343025240812578, 3.45105511310818678399443460005, 5.15166699712721117624005442623, 5.95874539460402550803226175504, 6.22688278065087222181262375563, 7.62190648936649790895299040758, 8.383216908065621612979749664439, 9.460921995055035657665285988072, 9.926643816528771425453593935499

Graph of the $Z$-function along the critical line