| L(s) = 1 | + (0.800 − 1.16i)2-s + 2.62i·3-s + (−0.719 − 1.86i)4-s + (3.06 + 2.10i)6-s + 0.269·7-s + (−2.75 − 0.654i)8-s − 3.89·9-s + 4.58i·11-s + (4.90 − 1.88i)12-s − 1.55i·13-s + (0.215 − 0.313i)14-s + (−2.96 + 2.68i)16-s + 0.609·17-s + (−3.12 + 4.54i)18-s + 6.69i·19-s + ⋯ |
| L(s) = 1 | + (0.565 − 0.824i)2-s + 1.51i·3-s + (−0.359 − 0.933i)4-s + (1.25 + 0.858i)6-s + 0.101·7-s + (−0.972 − 0.231i)8-s − 1.29·9-s + 1.38i·11-s + (1.41 − 0.545i)12-s − 0.430i·13-s + (0.0575 − 0.0839i)14-s + (−0.741 + 0.671i)16-s + 0.147·17-s + (−0.735 + 1.07i)18-s + 1.53i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.231 - 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.231 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.32017 + 1.04305i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.32017 + 1.04305i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.800 + 1.16i)T \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 - 2.62iT - 3T^{2} \) |
| 7 | \( 1 - 0.269T + 7T^{2} \) |
| 11 | \( 1 - 4.58iT - 11T^{2} \) |
| 13 | \( 1 + 1.55iT - 13T^{2} \) |
| 17 | \( 1 - 0.609T + 17T^{2} \) |
| 19 | \( 1 - 6.69iT - 19T^{2} \) |
| 23 | \( 1 - 3.52T + 23T^{2} \) |
| 29 | \( 1 - 7.73iT - 29T^{2} \) |
| 31 | \( 1 + 3.34T + 31T^{2} \) |
| 37 | \( 1 + 5.32iT - 37T^{2} \) |
| 41 | \( 1 - 4.38T + 41T^{2} \) |
| 43 | \( 1 - 12.2iT - 43T^{2} \) |
| 47 | \( 1 + 9.54T + 47T^{2} \) |
| 53 | \( 1 + 10.6iT - 53T^{2} \) |
| 59 | \( 1 + 10.2iT - 59T^{2} \) |
| 61 | \( 1 - 13.2iT - 61T^{2} \) |
| 67 | \( 1 + 3.93iT - 67T^{2} \) |
| 71 | \( 1 - 6.95T + 71T^{2} \) |
| 73 | \( 1 - 5.93T + 73T^{2} \) |
| 79 | \( 1 - 10.1T + 79T^{2} \) |
| 83 | \( 1 + 6.52iT - 83T^{2} \) |
| 89 | \( 1 - 6.69T + 89T^{2} \) |
| 97 | \( 1 + 3.99T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13083796092785803877190238113, −9.690406512160410202213931757330, −8.980226329976036990864907859285, −7.79670178527630837427768062601, −6.45254914726948359101002981762, −5.26456949406516868786234283562, −4.84782682145323599537907289309, −3.87150624633248470921856695789, −3.17587972617589964912285158548, −1.74260888665745045218454706510,
0.64345409478402102281365805458, 2.37567826034005873128150281237, 3.39413556284903800138217184918, 4.76104333229179281303508417111, 5.78762327276722052495132163741, 6.49033141084776765299221199388, 7.11734998824596004347440909380, 7.941225092138832239858543150310, 8.585492608611252760075614959693, 9.369400983517919371104540787776