Properties

Degree $2$
Conductor $100$
Sign $0.447 + 0.894i$
Motivic weight $5$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 22i·3-s − 218i·7-s − 241·9-s − 480·11-s − 622i·13-s − 186i·17-s + 1.20e3·19-s + 4.79e3·21-s − 3.18e3i·23-s + 44i·27-s − 5.52e3·29-s + 9.35e3·31-s − 1.05e4i·33-s − 5.61e3i·37-s + 1.36e4·39-s + ⋯
L(s)  = 1  + 1.41i·3-s − 1.68i·7-s − 0.991·9-s − 1.19·11-s − 1.02i·13-s − 0.156i·17-s + 0.765·19-s + 2.37·21-s − 1.25i·23-s + 0.0116i·27-s − 1.22·29-s + 1.74·31-s − 1.68i·33-s − 0.674i·37-s + 1.44·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Motivic weight: \(5\)
Character: $\chi_{100} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :5/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.948069 - 0.585938i\)
\(L(\frac12)\) \(\approx\) \(0.948069 - 0.585938i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 22iT - 243T^{2} \)
7 \( 1 + 218iT - 1.68e4T^{2} \)
11 \( 1 + 480T + 1.61e5T^{2} \)
13 \( 1 + 622iT - 3.71e5T^{2} \)
17 \( 1 + 186iT - 1.41e6T^{2} \)
19 \( 1 - 1.20e3T + 2.47e6T^{2} \)
23 \( 1 + 3.18e3iT - 6.43e6T^{2} \)
29 \( 1 + 5.52e3T + 2.05e7T^{2} \)
31 \( 1 - 9.35e3T + 2.86e7T^{2} \)
37 \( 1 + 5.61e3iT - 6.93e7T^{2} \)
41 \( 1 + 1.43e4T + 1.15e8T^{2} \)
43 \( 1 + 370iT - 1.47e8T^{2} \)
47 \( 1 + 1.61e4iT - 2.29e8T^{2} \)
53 \( 1 + 4.37e3iT - 4.18e8T^{2} \)
59 \( 1 - 1.17e4T + 7.14e8T^{2} \)
61 \( 1 - 1.32e4T + 8.44e8T^{2} \)
67 \( 1 - 1.15e4iT - 1.35e9T^{2} \)
71 \( 1 + 2.95e4T + 1.80e9T^{2} \)
73 \( 1 - 3.36e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.12e4T + 3.07e9T^{2} \)
83 \( 1 + 3.84e4iT - 3.93e9T^{2} \)
89 \( 1 + 1.19e5T + 5.58e9T^{2} \)
97 \( 1 + 9.46e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94413892549526068153423632625, −11.23067453634351279752107739075, −10.21215189734531821802357364648, −10.10016586258612539175154861715, −8.351436312350168455783687219368, −7.21395051296656781889049430941, −5.34886129743555918672349690512, −4.32708726719985766938909321496, −3.15968668002452611948618399455, −0.42922929739508661423373705015, 1.66100540952640138243097922729, 2.76210968078179921982665480749, 5.25920091769356198073809954037, 6.28726574150430824333206229539, 7.54330958615218194979753127202, 8.486876319914660903375291367264, 9.673403851168556882213035860148, 11.51420899461360142956913198021, 12.06029969465593194594557080627, 13.06765048208727941147586477003

Graph of the $Z$-function along the critical line