Properties

Label 2-10e2-25.9-c3-0-5
Degree $2$
Conductor $100$
Sign $-0.898 + 0.439i$
Analytic cond. $5.90019$
Root an. cond. $2.42903$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.71 + 1.53i)3-s + (3.20 + 10.7i)5-s − 16.8i·7-s + (−1.97 + 1.43i)9-s + (−47.8 − 34.7i)11-s + (−3.71 − 5.10i)13-s + (−31.4 − 45.5i)15-s + (−125. − 40.6i)17-s + (−25.3 + 78.1i)19-s + (25.8 + 79.4i)21-s + (93.7 − 128. i)23-s + (−104. + 68.5i)25-s + (85.7 − 118. i)27-s + (15.4 + 47.5i)29-s + (−13.8 + 42.4i)31-s + ⋯
L(s)  = 1  + (−0.907 + 0.294i)3-s + (0.286 + 0.958i)5-s − 0.910i·7-s + (−0.0730 + 0.0530i)9-s + (−1.31 − 0.952i)11-s + (−0.0791 − 0.108i)13-s + (−0.542 − 0.784i)15-s + (−1.78 − 0.580i)17-s + (−0.306 + 0.943i)19-s + (0.268 + 0.825i)21-s + (0.849 − 1.16i)23-s + (−0.835 + 0.548i)25-s + (0.611 − 0.841i)27-s + (0.0990 + 0.304i)29-s + (−0.0799 + 0.246i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.898 + 0.439i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.898 + 0.439i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $-0.898 + 0.439i$
Analytic conductor: \(5.90019\)
Root analytic conductor: \(2.42903\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :3/2),\ -0.898 + 0.439i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0115194 - 0.0497314i\)
\(L(\frac12)\) \(\approx\) \(0.0115194 - 0.0497314i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-3.20 - 10.7i)T \)
good3 \( 1 + (4.71 - 1.53i)T + (21.8 - 15.8i)T^{2} \)
7 \( 1 + 16.8iT - 343T^{2} \)
11 \( 1 + (47.8 + 34.7i)T + (411. + 1.26e3i)T^{2} \)
13 \( 1 + (3.71 + 5.10i)T + (-678. + 2.08e3i)T^{2} \)
17 \( 1 + (125. + 40.6i)T + (3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (25.3 - 78.1i)T + (-5.54e3 - 4.03e3i)T^{2} \)
23 \( 1 + (-93.7 + 128. i)T + (-3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (-15.4 - 47.5i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (13.8 - 42.4i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-44.1 - 60.7i)T + (-1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (286. - 207. i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 - 79.3iT - 7.95e4T^{2} \)
47 \( 1 + (289. - 94.1i)T + (8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-322. + 104. i)T + (1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (636. - 462. i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (-675. - 490. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + (578. + 187. i)T + (2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (18.9 + 58.4i)T + (-2.89e5 + 2.10e5i)T^{2} \)
73 \( 1 + (23.2 - 32.0i)T + (-1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (178. + 549. i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (-50.7 - 16.4i)T + (4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (1.17e3 + 850. i)T + (2.17e5 + 6.70e5i)T^{2} \)
97 \( 1 + (-50.9 + 16.5i)T + (7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13056892243332604820804582064, −11.46119585479468856341366664525, −10.72124787761818681807026778842, −10.28246736747764445142547070663, −8.435820024060410372823188466216, −7.02855293337905365425480153686, −5.99287156647890505667136255390, −4.67976923063420912110908483564, −2.83218985552868060073472182185, −0.02992021358528851905187808200, 2.16607348975135826614431070104, 4.79717078070951158590249805420, 5.58423563497763455297796271039, 6.88375915956341049119361101288, 8.488195337514933460566609956790, 9.404322228361807569695880395365, 10.85843694058105157098805864739, 11.83769718693123190500864148650, 12.80198860625295830907394693387, 13.32399904338076264481311678775

Graph of the $Z$-function along the critical line