Properties

Label 2-10e2-25.4-c3-0-7
Degree $2$
Conductor $100$
Sign $-0.532 + 0.846i$
Analytic cond. $5.90019$
Root an. cond. $2.42903$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.08 − 5.62i)3-s + (−11.1 + 0.725i)5-s − 19.2i·7-s + (−6.59 − 20.2i)9-s + (13.7 − 42.4i)11-s + (−62.4 + 20.2i)13-s + (−41.5 + 65.7i)15-s + (16.7 + 23.0i)17-s + (76.5 − 55.6i)19-s + (−108. − 78.8i)21-s + (−112. − 36.5i)23-s + (123. − 16.1i)25-s + (37.4 + 12.1i)27-s + (−7.32 − 5.31i)29-s + (205. − 149. i)31-s + ⋯
L(s)  = 1  + (0.786 − 1.08i)3-s + (−0.997 + 0.0648i)5-s − 1.04i·7-s + (−0.244 − 0.751i)9-s + (0.377 − 1.16i)11-s + (−1.33 + 0.432i)13-s + (−0.714 + 1.13i)15-s + (0.238 + 0.328i)17-s + (0.924 − 0.671i)19-s + (−1.12 − 0.819i)21-s + (−1.02 − 0.331i)23-s + (0.991 − 0.129i)25-s + (0.266 + 0.0866i)27-s + (−0.0468 − 0.0340i)29-s + (1.19 − 0.867i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.532 + 0.846i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.532 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $-0.532 + 0.846i$
Analytic conductor: \(5.90019\)
Root analytic conductor: \(2.42903\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :3/2),\ -0.532 + 0.846i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.717294 - 1.29831i\)
\(L(\frac12)\) \(\approx\) \(0.717294 - 1.29831i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (11.1 - 0.725i)T \)
good3 \( 1 + (-4.08 + 5.62i)T + (-8.34 - 25.6i)T^{2} \)
7 \( 1 + 19.2iT - 343T^{2} \)
11 \( 1 + (-13.7 + 42.4i)T + (-1.07e3 - 782. i)T^{2} \)
13 \( 1 + (62.4 - 20.2i)T + (1.77e3 - 1.29e3i)T^{2} \)
17 \( 1 + (-16.7 - 23.0i)T + (-1.51e3 + 4.67e3i)T^{2} \)
19 \( 1 + (-76.5 + 55.6i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + (112. + 36.5i)T + (9.84e3 + 7.15e3i)T^{2} \)
29 \( 1 + (7.32 + 5.31i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-205. + 149. i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (-261. + 85.0i)T + (4.09e4 - 2.97e4i)T^{2} \)
41 \( 1 + (-89.4 - 275. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 - 371. iT - 7.95e4T^{2} \)
47 \( 1 + (94.9 - 130. i)T + (-3.20e4 - 9.87e4i)T^{2} \)
53 \( 1 + (-94.9 + 130. i)T + (-4.60e4 - 1.41e5i)T^{2} \)
59 \( 1 + (-60.1 - 185. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (-132. + 408. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + (549. + 756. i)T + (-9.29e4 + 2.86e5i)T^{2} \)
71 \( 1 + (-781. - 567. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-267. - 86.9i)T + (3.14e5 + 2.28e5i)T^{2} \)
79 \( 1 + (559. + 406. i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (391. + 538. i)T + (-1.76e5 + 5.43e5i)T^{2} \)
89 \( 1 + (385. - 1.18e3i)T + (-5.70e5 - 4.14e5i)T^{2} \)
97 \( 1 + (-812. + 1.11e3i)T + (-2.82e5 - 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17220566105006119320309719144, −12.05055780172659422721538686246, −11.15933634079709360004637194522, −9.636351999334856739775349791507, −8.136256933119307913256635800606, −7.61963326488093812412213473558, −6.56413308856800564602359828018, −4.33379262800632616451124130299, −2.88616622253719976810750201798, −0.802031154567237478541520030380, 2.71375946417261820455378507318, 4.07779406704228772233956945308, 5.20512036010546915429661732519, 7.30766591664185023567372187102, 8.381385533200816653334947455364, 9.499948655225780374350563781922, 10.16548853464296386388714978777, 11.98363446460740890683432880844, 12.24185524079575694297363774943, 14.17939138850217891106838722200

Graph of the $Z$-function along the critical line