Properties

Label 16-10e8-1.1-c16e8-0-0
Degree $16$
Conductor $100000000$
Sign $1$
Analytic cond. $4.82029\times 10^{9}$
Root an. cond. $4.02895$
Motivic weight $16$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.02e3·2-s − 5.38e3·3-s + 5.24e5·4-s + 1.84e5·5-s + 5.51e6·6-s − 1.58e6·7-s − 1.67e8·8-s + 1.44e7·9-s − 1.89e8·10-s + 3.07e8·11-s − 2.82e9·12-s + 2.02e8·13-s + 1.62e9·14-s − 9.94e8·15-s + 3.22e10·16-s − 1.08e10·17-s − 1.48e10·18-s + 9.69e10·20-s + 8.53e9·21-s − 3.15e11·22-s − 5.81e10·23-s + 9.02e11·24-s + 4.14e10·25-s − 2.06e11·26-s − 2.47e11·27-s − 8.31e11·28-s + 1.01e12·30-s + ⋯
L(s)  = 1  − 4·2-s − 0.820·3-s + 8·4-s + 0.473·5-s + 3.28·6-s − 0.275·7-s − 10·8-s + 0.336·9-s − 1.89·10-s + 1.43·11-s − 6.56·12-s + 0.247·13-s + 1.10·14-s − 0.388·15-s + 15/2·16-s − 1.55·17-s − 1.34·18-s + 3.78·20-s + 0.225·21-s − 5.74·22-s − 0.742·23-s + 8.20·24-s + 0.271·25-s − 0.990·26-s − 0.877·27-s − 2.20·28-s + 1.55·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(17-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+8)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(4.82029\times 10^{9}\)
Root analytic conductor: \(4.02895\)
Motivic weight: \(16\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 5^{8} ,\ ( \ : [8]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{17}{2})\) \(\approx\) \(0.5707156604\)
\(L(\frac12)\) \(\approx\) \(0.5707156604\)
\(L(9)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{8} T + p^{15} T^{2} )^{4} \)
5 \( 1 - 36966 p T - 2336608 p^{5} T^{2} + 1256170374 p^{9} T^{3} - 778790521482 p^{15} T^{4} + 1256170374 p^{25} T^{5} - 2336608 p^{37} T^{6} - 36966 p^{49} T^{7} + p^{64} T^{8} \)
good3 \( 1 + 598 p^{2} T + 178802 p^{4} T^{2} + 3059290382 p^{4} T^{3} + 22110072141568 p^{4} T^{4} - 1305214369446874 p^{7} T^{5} - 179472319682831170 p^{10} T^{6} - \)\(40\!\cdots\!90\)\( p^{12} T^{7} - \)\(87\!\cdots\!06\)\( p^{14} T^{8} - \)\(40\!\cdots\!90\)\( p^{28} T^{9} - 179472319682831170 p^{42} T^{10} - 1305214369446874 p^{55} T^{11} + 22110072141568 p^{68} T^{12} + 3059290382 p^{84} T^{13} + 178802 p^{100} T^{14} + 598 p^{114} T^{15} + p^{128} T^{16} \)
7 \( 1 + 1586702 T + 1258811618402 T^{2} + 42987008861201651146 p T^{3} + \)\(21\!\cdots\!12\)\( p^{2} T^{4} + \)\(16\!\cdots\!94\)\( p^{3} T^{5} + \)\(18\!\cdots\!50\)\( p^{4} T^{6} + \)\(23\!\cdots\!70\)\( p^{6} T^{7} + \)\(51\!\cdots\!26\)\( p^{8} T^{8} + \)\(23\!\cdots\!70\)\( p^{22} T^{9} + \)\(18\!\cdots\!50\)\( p^{36} T^{10} + \)\(16\!\cdots\!94\)\( p^{51} T^{11} + \)\(21\!\cdots\!12\)\( p^{66} T^{12} + 42987008861201651146 p^{81} T^{13} + 1258811618402 p^{96} T^{14} + 1586702 p^{112} T^{15} + p^{128} T^{16} \)
11 \( ( 1 - 13998058 p T + 150796147434775648 T^{2} - \)\(16\!\cdots\!86\)\( p T^{3} + \)\(79\!\cdots\!70\)\( p^{2} T^{4} - \)\(16\!\cdots\!86\)\( p^{17} T^{5} + 150796147434775648 p^{32} T^{6} - 13998058 p^{49} T^{7} + p^{64} T^{8} )^{2} \)
13 \( 1 - 202095228 T + 20421240590185992 T^{2} - \)\(24\!\cdots\!56\)\( p T^{3} + \)\(28\!\cdots\!12\)\( p^{2} T^{4} + \)\(11\!\cdots\!16\)\( p^{3} T^{5} - \)\(27\!\cdots\!40\)\( p^{4} T^{6} + \)\(21\!\cdots\!40\)\( p^{5} T^{7} + \)\(64\!\cdots\!14\)\( p^{6} T^{8} + \)\(21\!\cdots\!40\)\( p^{21} T^{9} - \)\(27\!\cdots\!40\)\( p^{36} T^{10} + \)\(11\!\cdots\!16\)\( p^{51} T^{11} + \)\(28\!\cdots\!12\)\( p^{66} T^{12} - \)\(24\!\cdots\!56\)\( p^{81} T^{13} + 20421240590185992 p^{96} T^{14} - 202095228 p^{112} T^{15} + p^{128} T^{16} \)
17 \( 1 + 10825054172 T + 58590898913367302792 T^{2} + \)\(42\!\cdots\!52\)\( T^{3} + \)\(93\!\cdots\!68\)\( T^{4} - \)\(12\!\cdots\!28\)\( T^{5} - \)\(10\!\cdots\!20\)\( T^{6} - \)\(75\!\cdots\!00\)\( T^{7} - \)\(52\!\cdots\!34\)\( T^{8} - \)\(75\!\cdots\!00\)\( p^{16} T^{9} - \)\(10\!\cdots\!20\)\( p^{32} T^{10} - \)\(12\!\cdots\!28\)\( p^{48} T^{11} + \)\(93\!\cdots\!68\)\( p^{64} T^{12} + \)\(42\!\cdots\!52\)\( p^{80} T^{13} + 58590898913367302792 p^{96} T^{14} + 10825054172 p^{112} T^{15} + p^{128} T^{16} \)
19 \( 1 + \)\(12\!\cdots\!52\)\( T^{2} + \)\(11\!\cdots\!32\)\( p T^{4} + \)\(19\!\cdots\!04\)\( T^{6} + \)\(25\!\cdots\!70\)\( T^{8} + \)\(19\!\cdots\!04\)\( p^{32} T^{10} + \)\(11\!\cdots\!32\)\( p^{65} T^{12} + \)\(12\!\cdots\!52\)\( p^{96} T^{14} + p^{128} T^{16} \)
23 \( 1 + 58166716742 T + \)\(16\!\cdots\!82\)\( T^{2} - \)\(66\!\cdots\!18\)\( T^{3} + \)\(39\!\cdots\!48\)\( T^{4} + \)\(54\!\cdots\!02\)\( T^{5} + \)\(53\!\cdots\!10\)\( T^{6} - \)\(79\!\cdots\!30\)\( T^{7} - \)\(29\!\cdots\!94\)\( T^{8} - \)\(79\!\cdots\!30\)\( p^{16} T^{9} + \)\(53\!\cdots\!10\)\( p^{32} T^{10} + \)\(54\!\cdots\!02\)\( p^{48} T^{11} + \)\(39\!\cdots\!48\)\( p^{64} T^{12} - \)\(66\!\cdots\!18\)\( p^{80} T^{13} + \)\(16\!\cdots\!82\)\( p^{96} T^{14} + 58166716742 p^{112} T^{15} + p^{128} T^{16} \)
29 \( 1 - \)\(16\!\cdots\!68\)\( T^{2} + \)\(12\!\cdots\!48\)\( T^{4} - \)\(56\!\cdots\!16\)\( T^{6} + \)\(17\!\cdots\!70\)\( T^{8} - \)\(56\!\cdots\!16\)\( p^{32} T^{10} + \)\(12\!\cdots\!48\)\( p^{64} T^{12} - \)\(16\!\cdots\!68\)\( p^{96} T^{14} + p^{128} T^{16} \)
31 \( ( 1 + 751878907742 T + \)\(23\!\cdots\!48\)\( T^{2} + \)\(15\!\cdots\!74\)\( T^{3} + \)\(23\!\cdots\!70\)\( T^{4} + \)\(15\!\cdots\!74\)\( p^{16} T^{5} + \)\(23\!\cdots\!48\)\( p^{32} T^{6} + 751878907742 p^{48} T^{7} + p^{64} T^{8} )^{2} \)
37 \( 1 - 5719558248048 T + \)\(16\!\cdots\!52\)\( T^{2} - \)\(84\!\cdots\!48\)\( T^{3} + \)\(40\!\cdots\!44\)\( p T^{4} + \)\(57\!\cdots\!12\)\( T^{5} - \)\(22\!\cdots\!80\)\( T^{6} + \)\(13\!\cdots\!60\)\( T^{7} - \)\(79\!\cdots\!34\)\( T^{8} + \)\(13\!\cdots\!60\)\( p^{16} T^{9} - \)\(22\!\cdots\!80\)\( p^{32} T^{10} + \)\(57\!\cdots\!12\)\( p^{48} T^{11} + \)\(40\!\cdots\!44\)\( p^{65} T^{12} - \)\(84\!\cdots\!48\)\( p^{80} T^{13} + \)\(16\!\cdots\!52\)\( p^{96} T^{14} - 5719558248048 p^{112} T^{15} + p^{128} T^{16} \)
41 \( ( 1 + 10812330713362 T + \)\(93\!\cdots\!68\)\( T^{2} + \)\(88\!\cdots\!34\)\( T^{3} + \)\(56\!\cdots\!70\)\( T^{4} + \)\(88\!\cdots\!34\)\( p^{16} T^{5} + \)\(93\!\cdots\!68\)\( p^{32} T^{6} + 10812330713362 p^{48} T^{7} + p^{64} T^{8} )^{2} \)
43 \( 1 - 694778360778 T + \)\(24\!\cdots\!42\)\( T^{2} + \)\(27\!\cdots\!42\)\( T^{3} + \)\(98\!\cdots\!88\)\( T^{4} - \)\(48\!\cdots\!18\)\( T^{5} + \)\(41\!\cdots\!90\)\( T^{6} + \)\(56\!\cdots\!90\)\( T^{7} - \)\(10\!\cdots\!14\)\( T^{8} + \)\(56\!\cdots\!90\)\( p^{16} T^{9} + \)\(41\!\cdots\!90\)\( p^{32} T^{10} - \)\(48\!\cdots\!18\)\( p^{48} T^{11} + \)\(98\!\cdots\!88\)\( p^{64} T^{12} + \)\(27\!\cdots\!42\)\( p^{80} T^{13} + \)\(24\!\cdots\!42\)\( p^{96} T^{14} - 694778360778 p^{112} T^{15} + p^{128} T^{16} \)
47 \( 1 - 17454156046938 T + \)\(15\!\cdots\!22\)\( T^{2} + \)\(10\!\cdots\!22\)\( T^{3} + \)\(18\!\cdots\!08\)\( T^{4} - \)\(17\!\cdots\!78\)\( T^{5} + \)\(33\!\cdots\!30\)\( T^{6} - \)\(29\!\cdots\!50\)\( T^{7} - \)\(11\!\cdots\!74\)\( T^{8} - \)\(29\!\cdots\!50\)\( p^{16} T^{9} + \)\(33\!\cdots\!30\)\( p^{32} T^{10} - \)\(17\!\cdots\!78\)\( p^{48} T^{11} + \)\(18\!\cdots\!08\)\( p^{64} T^{12} + \)\(10\!\cdots\!22\)\( p^{80} T^{13} + \)\(15\!\cdots\!22\)\( p^{96} T^{14} - 17454156046938 p^{112} T^{15} + p^{128} T^{16} \)
53 \( 1 - 315933715243808 T + \)\(49\!\cdots\!32\)\( T^{2} - \)\(59\!\cdots\!48\)\( T^{3} + \)\(63\!\cdots\!08\)\( T^{4} - \)\(57\!\cdots\!68\)\( T^{5} + \)\(45\!\cdots\!40\)\( T^{6} - \)\(33\!\cdots\!60\)\( T^{7} + \)\(21\!\cdots\!66\)\( T^{8} - \)\(33\!\cdots\!60\)\( p^{16} T^{9} + \)\(45\!\cdots\!40\)\( p^{32} T^{10} - \)\(57\!\cdots\!68\)\( p^{48} T^{11} + \)\(63\!\cdots\!08\)\( p^{64} T^{12} - \)\(59\!\cdots\!48\)\( p^{80} T^{13} + \)\(49\!\cdots\!32\)\( p^{96} T^{14} - 315933715243808 p^{112} T^{15} + p^{128} T^{16} \)
59 \( 1 - \)\(97\!\cdots\!28\)\( T^{2} + \)\(43\!\cdots\!68\)\( T^{4} - \)\(12\!\cdots\!76\)\( T^{6} + \)\(27\!\cdots\!70\)\( T^{8} - \)\(12\!\cdots\!76\)\( p^{32} T^{10} + \)\(43\!\cdots\!68\)\( p^{64} T^{12} - \)\(97\!\cdots\!28\)\( p^{96} T^{14} + p^{128} T^{16} \)
61 \( ( 1 + 130335916024242 T + \)\(10\!\cdots\!68\)\( T^{2} + \)\(98\!\cdots\!54\)\( T^{3} + \)\(52\!\cdots\!70\)\( T^{4} + \)\(98\!\cdots\!54\)\( p^{16} T^{5} + \)\(10\!\cdots\!68\)\( p^{32} T^{6} + 130335916024242 p^{48} T^{7} + p^{64} T^{8} )^{2} \)
67 \( 1 - 635885550643738 T + \)\(20\!\cdots\!22\)\( T^{2} - \)\(12\!\cdots\!58\)\( T^{3} + \)\(92\!\cdots\!68\)\( T^{4} - \)\(33\!\cdots\!98\)\( T^{5} + \)\(97\!\cdots\!10\)\( T^{6} - \)\(54\!\cdots\!30\)\( T^{7} + \)\(30\!\cdots\!86\)\( T^{8} - \)\(54\!\cdots\!30\)\( p^{16} T^{9} + \)\(97\!\cdots\!10\)\( p^{32} T^{10} - \)\(33\!\cdots\!98\)\( p^{48} T^{11} + \)\(92\!\cdots\!68\)\( p^{64} T^{12} - \)\(12\!\cdots\!58\)\( p^{80} T^{13} + \)\(20\!\cdots\!22\)\( p^{96} T^{14} - 635885550643738 p^{112} T^{15} + p^{128} T^{16} \)
71 \( ( 1 + 574994655631502 T + \)\(12\!\cdots\!48\)\( T^{2} + \)\(61\!\cdots\!14\)\( T^{3} + \)\(71\!\cdots\!70\)\( T^{4} + \)\(61\!\cdots\!14\)\( p^{16} T^{5} + \)\(12\!\cdots\!48\)\( p^{32} T^{6} + 574994655631502 p^{48} T^{7} + p^{64} T^{8} )^{2} \)
73 \( 1 - 256748998181048 T + \)\(32\!\cdots\!52\)\( T^{2} - \)\(14\!\cdots\!08\)\( T^{3} + \)\(10\!\cdots\!48\)\( T^{4} - \)\(20\!\cdots\!28\)\( T^{5} + \)\(27\!\cdots\!80\)\( T^{6} - \)\(12\!\cdots\!00\)\( T^{7} + \)\(56\!\cdots\!86\)\( T^{8} - \)\(12\!\cdots\!00\)\( p^{16} T^{9} + \)\(27\!\cdots\!80\)\( p^{32} T^{10} - \)\(20\!\cdots\!28\)\( p^{48} T^{11} + \)\(10\!\cdots\!48\)\( p^{64} T^{12} - \)\(14\!\cdots\!08\)\( p^{80} T^{13} + \)\(32\!\cdots\!52\)\( p^{96} T^{14} - 256748998181048 p^{112} T^{15} + p^{128} T^{16} \)
79 \( 1 - \)\(63\!\cdots\!68\)\( T^{2} + \)\(16\!\cdots\!48\)\( T^{4} - \)\(33\!\cdots\!16\)\( T^{6} + \)\(79\!\cdots\!70\)\( T^{8} - \)\(33\!\cdots\!16\)\( p^{32} T^{10} + \)\(16\!\cdots\!48\)\( p^{64} T^{12} - \)\(63\!\cdots\!68\)\( p^{96} T^{14} + p^{128} T^{16} \)
83 \( 1 + 4115160605935662 T + \)\(84\!\cdots\!22\)\( T^{2} + \)\(21\!\cdots\!42\)\( T^{3} + \)\(10\!\cdots\!68\)\( T^{4} + \)\(30\!\cdots\!02\)\( T^{5} + \)\(61\!\cdots\!10\)\( T^{6} + \)\(15\!\cdots\!70\)\( T^{7} + \)\(40\!\cdots\!86\)\( T^{8} + \)\(15\!\cdots\!70\)\( p^{16} T^{9} + \)\(61\!\cdots\!10\)\( p^{32} T^{10} + \)\(30\!\cdots\!02\)\( p^{48} T^{11} + \)\(10\!\cdots\!68\)\( p^{64} T^{12} + \)\(21\!\cdots\!42\)\( p^{80} T^{13} + \)\(84\!\cdots\!22\)\( p^{96} T^{14} + 4115160605935662 p^{112} T^{15} + p^{128} T^{16} \)
89 \( 1 - \)\(76\!\cdots\!88\)\( T^{2} + \)\(28\!\cdots\!88\)\( T^{4} - \)\(66\!\cdots\!36\)\( T^{6} + \)\(11\!\cdots\!70\)\( T^{8} - \)\(66\!\cdots\!36\)\( p^{32} T^{10} + \)\(28\!\cdots\!88\)\( p^{64} T^{12} - \)\(76\!\cdots\!88\)\( p^{96} T^{14} + p^{128} T^{16} \)
97 \( 1 + 17859102248834952 T + \)\(15\!\cdots\!52\)\( T^{2} + \)\(17\!\cdots\!12\)\( T^{3} + \)\(18\!\cdots\!08\)\( T^{4} + \)\(12\!\cdots\!52\)\( T^{5} + \)\(78\!\cdots\!60\)\( T^{6} + \)\(60\!\cdots\!20\)\( T^{7} + \)\(47\!\cdots\!46\)\( T^{8} + \)\(60\!\cdots\!20\)\( p^{16} T^{9} + \)\(78\!\cdots\!60\)\( p^{32} T^{10} + \)\(12\!\cdots\!52\)\( p^{48} T^{11} + \)\(18\!\cdots\!08\)\( p^{64} T^{12} + \)\(17\!\cdots\!12\)\( p^{80} T^{13} + \)\(15\!\cdots\!52\)\( p^{96} T^{14} + 17859102248834952 p^{112} T^{15} + p^{128} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.65006197101604722301927509618, −6.64052323735598630523681164876, −6.16236011962404935244098319134, −5.81140364160380694586820198316, −5.61847117575609099031805028210, −5.55731199295705145750690911427, −5.24305236095037133899356050027, −4.59295647140129265805009030447, −4.53683573714926280731186391389, −4.12126404774772825132285769712, −3.98554475440762464818319114606, −3.73641263402614545479111852557, −3.45457050596958245127554399182, −2.72494373198104791124867427940, −2.57039400077011907266071325933, −2.56412987221504285960909543186, −1.90657723590282010577090065013, −1.68664110248150064709349436687, −1.67866513111496229610955226798, −1.50718583547730275253680605230, −1.12609991174402523715159833705, −0.70336882450104222968389289000, −0.44584724890944152811742597143, −0.44416921524991227150799225485, −0.33418997876644255069945674140, 0.33418997876644255069945674140, 0.44416921524991227150799225485, 0.44584724890944152811742597143, 0.70336882450104222968389289000, 1.12609991174402523715159833705, 1.50718583547730275253680605230, 1.67866513111496229610955226798, 1.68664110248150064709349436687, 1.90657723590282010577090065013, 2.56412987221504285960909543186, 2.57039400077011907266071325933, 2.72494373198104791124867427940, 3.45457050596958245127554399182, 3.73641263402614545479111852557, 3.98554475440762464818319114606, 4.12126404774772825132285769712, 4.53683573714926280731186391389, 4.59295647140129265805009030447, 5.24305236095037133899356050027, 5.55731199295705145750690911427, 5.61847117575609099031805028210, 5.81140364160380694586820198316, 6.16236011962404935244098319134, 6.64052323735598630523681164876, 6.65006197101604722301927509618

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.