Properties

Label 2-1-1.1-c119-0-3
Degree $2$
Conductor $1$
Sign $1$
Analytic cond. $89.6776$
Root an. cond. $9.46983$
Motivic weight $119$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.59e18·2-s − 3.81e28·3-s + 1.88e36·4-s + 5.86e40·5-s + 6.09e46·6-s − 2.05e50·7-s − 1.95e54·8-s + 8.54e56·9-s − 9.36e58·10-s − 9.77e60·11-s − 7.20e64·12-s − 6.38e65·13-s + 3.27e68·14-s − 2.23e69·15-s + 1.87e72·16-s + 1.67e73·17-s − 1.36e75·18-s + 1.05e76·19-s + 1.10e77·20-s + 7.82e78·21-s + 1.56e79·22-s + 9.13e80·23-s + 7.45e82·24-s − 1.47e83·25-s + 1.02e84·26-s − 9.73e84·27-s − 3.87e86·28-s + ⋯
L(s)  = 1  − 1.96·2-s − 1.55·3-s + 2.84·4-s + 0.151·5-s + 3.05·6-s − 1.06·7-s − 3.61·8-s + 1.42·9-s − 0.296·10-s − 0.106·11-s − 4.42·12-s − 0.335·13-s + 2.09·14-s − 0.235·15-s + 4.23·16-s + 1.03·17-s − 2.79·18-s + 0.862·19-s + 0.429·20-s + 1.66·21-s + 0.208·22-s + 0.866·23-s + 5.62·24-s − 0.977·25-s + 0.657·26-s − 0.663·27-s − 3.03·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s) \, L(s)\cr=\mathstrut & \,\Lambda(120-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s+59.5) \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(89.6776\)
Root analytic conductor: \(9.46983\)
Motivic weight: \(119\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1,\ (\ :119/2),\ 1)\)

Particular Values

\(L(60)\) \(\approx\) \(0.2776114577\)
\(L(\frac12)\) \(\approx\) \(0.2776114577\)
\(L(\frac{121}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
good2 \( 1 + 1.59e18T + 6.64e35T^{2} \)
3 \( 1 + 3.81e28T + 5.99e56T^{2} \)
5 \( 1 - 5.86e40T + 1.50e83T^{2} \)
7 \( 1 + 2.05e50T + 3.68e100T^{2} \)
11 \( 1 + 9.77e60T + 8.42e123T^{2} \)
13 \( 1 + 6.38e65T + 3.62e132T^{2} \)
17 \( 1 - 1.67e73T + 2.65e146T^{2} \)
19 \( 1 - 1.05e76T + 1.48e152T^{2} \)
23 \( 1 - 9.13e80T + 1.11e162T^{2} \)
29 \( 1 + 7.45e86T + 1.06e174T^{2} \)
31 \( 1 - 8.54e88T + 2.96e177T^{2} \)
37 \( 1 + 1.06e92T + 4.13e186T^{2} \)
41 \( 1 - 7.85e95T + 8.34e191T^{2} \)
43 \( 1 - 3.24e96T + 2.41e194T^{2} \)
47 \( 1 + 2.08e99T + 9.54e198T^{2} \)
53 \( 1 - 1.04e102T + 1.54e205T^{2} \)
59 \( 1 + 2.56e105T + 5.38e210T^{2} \)
61 \( 1 + 8.19e105T + 2.84e212T^{2} \)
67 \( 1 + 5.67e108T + 2.00e217T^{2} \)
71 \( 1 - 2.10e110T + 1.99e220T^{2} \)
73 \( 1 - 3.49e110T + 5.43e221T^{2} \)
79 \( 1 + 4.77e112T + 6.57e225T^{2} \)
83 \( 1 + 2.60e114T + 2.34e228T^{2} \)
89 \( 1 - 3.17e115T + 9.49e231T^{2} \)
97 \( 1 + 1.43e118T + 2.66e236T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37815916911026117677061409745, −11.40869225963944721748582035519, −10.20872992989062804508002375318, −9.491524421480476130901456554391, −7.62115281441976013158854065261, −6.53681117370886585150223612809, −5.64137647741168427494054058482, −2.96210493329842226584665086333, −1.29468016248445498616990665543, −0.42399222610035565811023874292, 0.42399222610035565811023874292, 1.29468016248445498616990665543, 2.96210493329842226584665086333, 5.64137647741168427494054058482, 6.53681117370886585150223612809, 7.62115281441976013158854065261, 9.491524421480476130901456554391, 10.20872992989062804508002375318, 11.40869225963944721748582035519, 12.37815916911026117677061409745

Graph of the $Z$-function along the critical line