Dirichlet series
$L(s,f)$ = 1 | − 0.707·2-s − 0.983·3-s + 0.5·4-s + 0.547·5-s + 0.695·6-s + 0.377·7-s − 0.353·8-s − 0.0326·9-s − 0.387·10-s + 1.49·11-s − 0.491·12-s + 1.24·13-s − 0.267·14-s − 0.538·15-s + 0.250·16-s − 0.553·17-s + 0.0230·18-s + 0.387·19-s + 0.273·20-s − 0.371·21-s − 1.05·22-s + 0.731·23-s + 0.347·24-s − 0.700·25-s − 0.881·26-s + 1.01·27-s + 0.188·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,f)=\mathstrut & 14 ^{s/2} \, \Gamma_{\R}(s+(1 + 4.58i)) \, \Gamma_{\R}(s+(1 - 4.58i)) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(14\) = \(2 \cdot 7\) |
Sign: | $1$ |
Arithmetic: | no |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((2,\ 14,\ (1 + 4.58940589267i, 1 - 4.58940589267i:\ ),\ 1)\) |
Euler product
\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)
Imaginary part of the first few zeros on the critical line